Fagan, W. F. et al. Nitrogen in insects: Implications for trophic complexity and species diversification. Am. Nat. 160, 784–802 (2002).
Google Scholar
Kuhlmann, F. et al. Exploring the nitrogen ingestion of aphids—A new method using electrical penetration graph and (15)N labelling. PLoS ONE 8, e83085. https://doi.org/10.1371/journal.pone.0083085 (2013).
Google Scholar
Nalepa, C. A. Origin of termite eusociality: Trophallaxis integrates the social, nutritional, and microbial environments. Ecol. Entomol. 40, 323–335 (2015).
Google Scholar
Tong, R. L., Aguilera-Olivares, D., Chouvenc, T. & Su, N. Y. Nitrogen content of the exuviae of Coptotermes gestroi (Wasmann) (Blattodea: Rhinotermitidae). Heliyon 7, e06697. https://doi.org/10.1016/j.heliyon.2021.e06697 (2021).
Google Scholar
Nalepa, C. A. Altricial development in subsocial cockroach ancestors: Foundation for the evolution of phenotypic plasticity in termites. Evol. Dev. 12, 95–105 (2011).
Google Scholar
Abe, T. Evolution of life types in termites. In Evolution and coadaptation in biotic Communities (eds. Kawano, S., Connell, J. H. & Hidaka, T.) 126–148, (University of Tokyo Press, 1987).
Bourguignon, T. et al. The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol. Biol. Evol. 32, 406–421 (2015).
Google Scholar
Bucek, A. et al. Evolution of termite symbiosis informed by transcriptome-based phylogenies. Curr. Biol. 29, 3728–3734 (2019).
Google Scholar
Breznak, J. A. Ecology of prokaryotic microbes in the guts of wood-and litter-feeding termites. In Termites: Evolution, Sociality, Symbioses, Ecology (eds Abe, T. et al.) 209–231 (Springer, 2000).
Google Scholar
Potrikus, C. J. & Breznak, J. A. Gut bacteria recycle uric acid nitrogen in termites: A strategy for nutrient conservation. Proc. Natl. Acad. Sci. USA 78, 4601–4605 (1981).
Google Scholar
Bao, W., O’Malley, D. M. & Sederoff, R. R. Wood contains a cell-wall structural protein. Proc. Nat. Acad. Sci. USA 89, 6604–6608 (1992).
Google Scholar
Ji, R. & Brune, A. Nitrogen mineralization, ammonia accumulation, and emission of gaseous NH3 by soil-feeding termites. Biogeochem. 78, 267–283 (2006).
Google Scholar
Ngugi, D. K., Ji, R. & Brune, A. Nitrogen mineralization, denitrification, and nitrate ammonification by soil-feeding termites: A 15 N-based approach. Biogeochem. 103, 355–369 (2011).
Google Scholar
Chouvenc, T., Šobotník, J., Engel, M. S. & Bourguignon, T. Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae. Cell. Mol. Life Sci. 78, 2749–2769 (2021).
Google Scholar
Engel, M. S., Grimaldi, D. A. & Krishna, K. Termites (Isoptera): Their phylogeny, classification, and rise to ecological dominance. Am. Mus. Nov. 3650, 1–27 (2009).
Bignell, D. E. The role of symbionts in the evolution of termites and their rise to ecological dominance in the tropics. In The mechanistic benefits of microbial symbionts (ed. Hurst C. J.) 121–172 (Springer, Cham 2016).
Nalepa, C. A. Body size and termite evolution. Evol. Biol. 38, 243–257 (2011).
Google Scholar
Breznak, J. A., Brill, W. J., Mertins, J. W. & Coppel, H. C. Nitrogen fixation in termites. Nature 244, 577–580 (1973).
Google Scholar
Noda, S., Ohkuma, M. & Kudo, T. Nitrogen fixation genes expressed in the symbiotic microbial community in the gut of the termite Coptotermes formosanus. Microbes Environ. 17, 139–143 (2002).
Google Scholar
Benemann, J. R. Nitrogen fixation in termites. Science 181, 164–165 (1973).
Google Scholar
Waller, D. A., Breitenbeck, G. A. & La Fage, J. P. Variation in acetylene reduction by Coptotermes formosanus (Isoptera: Rhinotermitidae) related to colony source and termite size. Sociobiology 16, 191–196 (1989).
Pandey, S., Waller, D. A. & Gordon, A. S. Variation in acetylene-reduction (nitrogen-fixation) rates in Reticulitermes spp. (Isoptera: Rhinotermitidae). Virginia J. Sci. 43, 333–338 (1992).
Curtis, A. D. & Waller, D. A. Changes in nitrogen fixation rates in termites (Isoptera: Rhinotermitidae) maintained in the laboratory. Ann. Entomol. Soc. 88, 764–767 (1995).
Google Scholar
Golichenkov, M. V., Kostina, N. V., Ul’yanova, T. A., Kuznetsova, T. A. & Umarov, M. M. Diazotrophs in the digestive tract of termite Neotermes castaneus. Biol. Bull. 33, 508–512 (2006).
Dilworth, M. J. Acetylene reduction by nitrogen-fixing preparations from Clostridium pasteurianum. Biochim. Biophys. Acta General Subjects 127, 285–294 (1966).
Google Scholar
Bentley, B. L. Nitrogen fixation in termites: Fate of newly fixed nitrogen. J. Insect Physiol. 30, 653–655 (1984).
Google Scholar
Tieszen, L. L., Boutton, T. W., Tesdahl, K. G. & Slade, N. A. Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for delta(13)C analysis of diet. Oecologia 57, 32–37 (1983).
Google Scholar
Dabundo, R. et al. The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements. PLoS One. https://doi.org/10.1371/journal.pone.0110335 (2014).
Tayasu, I. Use of carbon and nitrogen isotope ratios in termite research. Ecol. Res. 13, 377–387 (1998).
Google Scholar
Bar-Shmuel, N., Behar, A. & Segoli, M. What do we know about biological nitrogen fixation in insects? Evidence and implications for the insect and the ecosystem. Insect Sci. 27, 392–403 (2020).
Google Scholar
Du, H., Chouvenc, T., Osbrink, W. L. A. & Su, N.-Y. Social interactions in the central nest of Coptotermes formosanus juvenile colonies. Insectes Soc. 63, 279–290. https://doi.org/10.1007/s00040-016-0464-4 (2016).
Google Scholar
Josens, G. & Makatia Wango, S. P. Niche differentiation between two sympatric Cubitermes Species (Isoptera, Termitidae, Cubitermitinae) revealed by stable C and N isotopes. Insects 10, 38. https://doi.org/10.3390/insects10020038 (2019).
Google Scholar
Burris, R. H. Nitrogenases. J. Biol. Chem. 266, 9339–9342 (1991).
Google Scholar
Nutting, W. L. Flight and colony foundation. In Biology of Termites Vol. 1 (eds Krishna, K & Weesner, F.) 233–282 (Academic Press, 1969).
Chouvenc, T. & Su, N. Y. Colony age-dependent pathway in caste development of Coptotermes formosanus Shiraki. Insectes Soc. 61, 171–182 (2014).
Google Scholar
Su, N. Y., Ban, P. M. & Scheffrahn, R. H. Foraging populations and territories of the eastern subterranean termite (Isoptera: Rhinotermitidae) in Southeastern Florida. Environ. Entomol. 22, 1113–1117 (1993).
Google Scholar
Su, N. Y., Osbrink, W. L. A., Kakkar, G., Mullins, A. & Chouvenc, T. Foraging distance and population size of juvenile colonies of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in laboratory extended arenas. J. Econ. Entomol. 110, 1728–1735 (2017).
Google Scholar
Rust, M. K. & Su, N. Y. Managing social insects of urban importance. Annu. Rev. Entomol. 57, 355–375 (2012).
Google Scholar
Krishna, K., Grimaldi, D. A., Krishna, V. & Engel, M. S. Treatise on the Isoptera of the world. Bull. Am. Mus. Nat. Hist. 377, 1–2704 (2013).
Google Scholar
Bourguignon, T. et al. Oceanic dispersal, vicariance and human introduction shaped the modern distribution of the termites Reticulitermes, Heterotermes and Coptotermes. Proc. Roy. Soc. B: Biol. Sci. 283, 20160179. https://doi.org/10.1098/rspb.2016.0179 (2016).
Google Scholar
Cleveland, L. R. The ability of termites to live perhaps indefinitely on a diet of pure cellulose. Biol. Bull. 48, 289–293 (1925).
Google Scholar
Roessler, E. S. A Preliminary study of the nitrogen needs of growing Termopsis. Univ. Calif. Publ. Zool. 36, 357–368 (1932).
Google Scholar
Hendee, E. C. The role of fungi in the diet of the common damp-wood termite Zootermopsis angusticolis. Hilgardia 9, 499–524 (1935).
Google Scholar
Hungate, R. E. Experiments on the nitrogen economy of termites. Ann. Entomol. Soc. Am. 34, 467–489 (1941).
Google Scholar
Mullins, A. J. & Su, N. Y. Parental nitrogen transfer and apparent absence of N2 fixation during colony foundation in Coptotermes formosanus Shiraki. Insects 9, 37. https://doi.org/10.3390/insects9020037 (2018).
Google Scholar
Prestwich, G. D., Bentley, B. L. & Carpenter, E. J. Nitrogen sources for neotropical nasute termites: Fixation and selective foraging. Oecologia 46, 397–401 (1980).
Google Scholar
Waidele, L., Korb, J., Voolstra, C.R., Dedeine, F. & Staubach, F. Ecological specificity of the metagenome in a set of lower termite species supports contribution of the microbiome to adaptation of the host. Anim. Microbio. 1, 13. https://doi.org/10.1186/s42523-019-0014-2 (2019).
Oster, G. F. & Wilson, E. O. Caste and ecology in the social insects. (Princeton University Press, Princeton, 1978).
Janzow, M. P. & Judd, T. M. The termite Reticulitermes flavipes (Rhinotermitidae: Isoptera) can acquire micronutrients from soil. Environ. Entomol. 44, 814–820 (2015).
Google Scholar
Noda, S., Ohkuma, M. & Kudo, T. Nitrogen fixation genes expressed in the symbiotic microbial community in the gut of the termite Coptotermes formosanus. Microb. Environ. 17, 139–143 (2002).
Google Scholar
Desai, M. S. & Brune, A. Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites. ISME J. 6, 1302–1313 (2012).
Google Scholar
Seefeldt, L. C., Hoffman, B. M. & Dean, D. R. Mechanism of Mo-dependent nitrogenase. Annu. Rev. biochem. 78, 701–722 (2009).
Google Scholar
Yamada, A., Inoue, T., Noda, S., Hongoh, Y. & Ohkuma, M. Evolutionary trend of phylogenetic diversity of nitrogen fixation genes in the gut community of wood-feeding termites. Mol. Ecol. 16, 3768–3777 (2007).
Google Scholar
Brune, A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 12, 168–180 (2014).
Google Scholar
Thanganathan, S. & Hasan, K. Diversity of nitrogen fixing bacteria associated with various termite species. Pertanika J. Tropic. Agri. Sci. 41, 925–940 (2018).
Mullins, A. J. et al. Dispersal flights of the Formosan subterranean termite (Isoptera: Rhinotermitidae). J. Econ. Entomol. 108, 707–719 (2015).
Google Scholar
Mullins, D. E. & Cochran, D. G. Nitrogen metabolism in the American cockroach—II. An examination of negative nitrogen balance with respect to mobilization of uric acid stores. Comp. Biochem. Physiol. A Physiol. 50, 501–510 (1975).
Waller, D. A. & La Fage, j. P. Seasonal patterns in foraging groups of Coptotermes formosanus (Rhinotermitidae). Sociobiology 13, 173–181 (1987).
Waller, D. A. & La Fage, J. P. Size variation in Coptotermes formosanus Shiraki (Rhinotermitidae): Consequences of host use. Am. Midl. Nat. 119, 436–440 (1988).
Google Scholar
Su, N.-Y. & La Fage, J. P. Forager proportion and caste composition of colonies of the Formosan subterranean termite (Isoptera: Rhinotermitidae) restricted to cypress trees in the Calcasieu River, Lake Charles, Louisiana. Sociobiology 33, 185–193 (1999).
Osbrink, W. L. A., Cornelius, M. L. & Showler, A. T. Bionomics and Formation of “bonsai” colonies with long-term rearing of Coptotermes formosanus (Isoptera: Rhinotermitidae). J. Econ. Entomol. 109, 770–778 (2016).
Google Scholar
Hochmair, H. H. & Scheffrahn, R. H. Spatial association of marine dockage with land-borne infestations of invasive termites (Isoptera: Rhinotermitidae: Coptotermes) in urban South Florida. J. Econ. Entomol. 103, 1338–1346 (2010).
Google Scholar
Scheffrahn, R. H. & Crowe, W. Ship-borne termite (Isoptera) border interceptions in Australia and onboard infestations in Florida, 1986–2009. Florida Entomol. 94, 57–63 (2011).
Google Scholar
Evans, T. A., Forschler, B. T. & Grace, J. K. Biology of invasive termites: A worldwide review. Annu. Rev. Entomol. 58, 455–474 (2013).
Google Scholar
Blumenfeld, A. J. et al. Bridgehead effect and multiple introductions shape the global invasion history of a termite. Comm. Biol. 4, 196. https://doi.org/10.1038/s42003-021-01725-x (2021).
Google Scholar
Evans, T. A. Predicting ecological impacts of invasive termites. Curr. Op. Insect Sci. 46, 88–94 (2021).
Google Scholar
Ayayee, P. A., Jones, S. C. & Sabree, Z. L. Can 13C stable isotope analysis uncover essential amino acid provisioning by termite-associated gut microbes?. PeerJ 3, e1218. https://doi.org/10.7717/peerj.1218 (2015).
Google Scholar
Moran, N. A. & Sloan, D. B. The hologenome concept: helpful or hollow?. PLoS Biol. 13, e1002311. https://doi.org/10.1371/journal.pbio.1002311 (2015).
Google Scholar
Bennett, G. M. & Moran, N. A. Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole. Proc. Natl. Acad. Sci. USA 112, 10169–10176 (2015).
Google Scholar
Sachs, J. L., Skophammer, R. G. & Regus, J. U. Evolutionary transitions in bacterial symbiosis. Proc. Nat. Acad. Sci. USA 108, 10800–10807 (2011).
Google Scholar
Peterson B. F. & Scharf M. E. Metatranscriptomic techniques for identifying cellulases in termites and their symbionts. In Cellulases. Methods in Molecular Biology, vol 1796 (ed. Lübeck, M.) 85–101 (Humana Press, New York, NY 2018).
Gaby, J. C. & Buckley, D. H. A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS ONE 7, e42149. https://doi.org/10.1371/journal.pone.0042149 (2012).
Google Scholar
Poly, F., Ranjard, L., Nazaret, S., Gourbiere, F. & Monrozier, L. J. Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties. App. Environ. Microbiol. 67, 2255–2262 (2001).
Google Scholar
Rocha, D. J., Santos, C. S. & Pacheco, L. G. Bacterial reference genes for gene expression studies by RT-qPCR: Survey and analysis. Antonie Van Leeuwenhoek 108, 685–693 (2015).
Google Scholar
Galisa, P. S. et al. Identification and validation of reference genes to study the gene expression in Gluconacetobacter diazotrophicus grown in different carbon sources using RT-qPCR. J. Microbiol. Methods 91, 1–7 (2012).
Google Scholar
Mignard, S. & Flandrois, J. P. Identification of Mycobacterium using the EF-Tu encoding (tuf) gene and the tmRNA encoding (ssrA) gene. J. Med. Microbiol. 56, 1033–1041 (2007).
Google Scholar
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).
Google Scholar
Source: Ecology - nature.com