in

Spatial distribution patterns of soil total phosphorus influenced by climatic factors in China’s forest ecosystems

  • 1.

    Weihrauch, C. Dynamics need space—a geospatial approach to soil phosphorus’ reactions and migration. Geoderma 354, 113775 (2019).

    CAS  Article  ADS  Google Scholar 

  • 2.

    Filippelli, G. M. The global phosphorus cycle: past, present, and future. Elements 4, 89–95 (2008).

    CAS  Article  Google Scholar 

  • 3.

    Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).

    CAS  Article  ADS  Google Scholar 

  • 4.

    Hou, E. et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 11, 637 (2020).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 5.

    Cordell, D. & White, S. Sustainable phosphorus measures: strategies and technologies for achieving phosphorus security. Agronomy 3, 86–116 (2013).

    Article  Google Scholar 

  • 6.

    Abelson, P. H. A potential phosphate crisis. Science 283, 2015 (1999).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 7.

    Yuan, Z. Y. & Chen, H. Y. A global analysis of fine root production as affected by soil nitrogen and phosphorus. Proc. R. Soc. B-Biol. Sci. 279, 3796–3802 (2012).

    CAS  Article  Google Scholar 

  • 8.

    Yang, Y. et al. Stoichiometric shifts in surface soils over broad geographical scales: evidence from China’s grasslands. Glob. Ecol. Biogeogr. 23, 947–955 (2014).

    Article  Google Scholar 

  • 9.

    Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).

    PubMed  Article  Google Scholar 

  • 10.

    Frossard, E., Condron, L. M., Oberson, A., Sinaj, S. & Fardeau, J. C. Processes governing phosphorus availability in temperate soils. J. Environ. Qual. 29, 15–23 (2000).

    CAS  Article  Google Scholar 

  • 11.

    Condron, L. M., Turner, B. L., Cade-Menun, B. J., Sims, J. T. & Sharpley, A. N. Chemistry and dynamics of soil organic phosphorus. Agron. Monogr. 46, 87–121 (2005).

    Google Scholar 

  • 12.

    Ruttenberg, K. C. The global phosphorus cycle: overview. Treatise Geochem. 10, 499–558 (2014).

    Article  Google Scholar 

  • 13.

    Walker, T. W. & Syers, J. K. The fate of phosphorus during pedogenesis. Geoderma 15, 19 (1976).

    Article  Google Scholar 

  • 14.

    Monger, C. et al. Legacy effects in linked ecological–soil–geomorphic systems of drylands. Front. Ecol. Environ. 13, 13–19 (2015).

    Article  Google Scholar 

  • 15.

    Siebers, N., Sumann, M., Kaiser, K. & Amelung, W. Climatic effects on phosphorus fractions of native and cultivated north American grassland soils. Soil Sci. Soc. Am. J. 81, 299–309 (2017).

    CAS  Article  ADS  Google Scholar 

  • 16.

    Stewart, J. W. B. & Tiessen, H. Dynamics of soil organic phosphorus. Biogeochemistry 4, 41–60 (1987).

    CAS  Article  Google Scholar 

  • 17.

    Lane, P. N. J. et al. Water balance of tropical eucalypt plantations in south-eastern China. Agric. For. Meteorol. 124, 253–267 (2004).

    Article  ADS  Google Scholar 

  • 18.

    Cheng, Y. et al. Effects of soil erosion and land use on spatial distribution of soil total phosphorus in a small watershed on the Loess Plateau, China. Soil Tillage Res. 184, 142–152 (2018).

    Article  Google Scholar 

  • 19.

    Lin, J., Zheng, S. & Lu, X. Storage and spatial variation of phosphorus in paddy soils of China. Pedosphere 19, 798 (2009).

    Article  Google Scholar 

  • 20.

    Zhang, C. et al. Pools and distributions of soil phosphorus in China. Glob. Biogeochem. Cycles 19, GB1020 (2005).

    Article  ADS  CAS  Google Scholar 

  • 21.

    Zhang, S. L., Huffman, T., Zhang, X. Y., Liu, W. & Liu, Z. H. Spatial distribution of soil nutrient at depth in black soil of Northeast China: a case study of soil available phosphorus and total phosphorus. J. Soil Sedim. 14, 1775–1789 (2014).

    CAS  Article  Google Scholar 

  • 22.

    Cheng, Y. et al. Spatial distribution of soil total phosphorus in Yingwugou watershed of the Dan River, China. CATENA 136, 175–181 (2016).

    CAS  Article  Google Scholar 

  • 23.

    Dixon, J. L., Chadwick, O. A. & Vitousek, P. M. Climate-driven thresholds for chemical weathering in postglacial soils of New Zealand. J. Geophys. Res. Earth Surf. 121, 1619–1634 (2016).

    CAS  Article  ADS  Google Scholar 

  • 24.

    Hou, E. et al. Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Glob. Change Biol. 24, 3344–3356 (2018).

    Article  ADS  Google Scholar 

  • 25.

    Liu, J. X. et al. Patterns and controlling factors of plant nitrogen and phosphorus stoichiometry across China’s forests. Biogeochemistry 143, 191–205 (2019).

    CAS  Article  Google Scholar 

  • 26.

    Qiao, J., Zhu, Y., Jia, X., Huang, L. & Shao, M. Vertical distribution of soil total nitrogen and soil total phosphorus in the critical zone on the Loess Plateau, China. CATENA 166, 310–316 (2018).

    CAS  Article  Google Scholar 

  • 27.

    Yang, W. et al. The influence of land-use change on the forms of phosphorus in soil profiles from the Sanjiang Plain of China. Geoderma 189, 207–214 (2012).

    Article  ADS  CAS  Google Scholar 

  • 28.

    Zuo, X. et al. Influence of dune stabilization on relationship between plant diversity and productivity in Horqin Sand Land, Northern China. Environ. Earth Sci. 67, 1547–1556 (2012).

    Article  Google Scholar 

  • 29.

    Güsewell, S. N: P ratios in terrestrial plants: variation and functional significance. New Phytol. 164, 243–266 (2004).

    Article  Google Scholar 

  • 30.

    García-Velázquez, L. et al. Climate and soil micro-organisms drive soil phosphorus fractions in coastal dune systems. Funct. Ecol. 34, 1690–1701 (2020).

    Article  Google Scholar 

  • 31.

    Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).

    Article  Google Scholar 

  • 32.

    Kooch, Y., Samadzadeh, B. & Hosseini, S. M. The effects of broad-leaved tree species on litter quality and soil properties in a plain forest stand. CATENA 150, 223–229 (2017).

    CAS  Article  Google Scholar 

  • 33.

    Jarvi, M. P. & Burton, A. J. Root respiration and biomass responses to experimental soil warming vary with root diameter and soil depth. Plant Soil 451, 435–446 (2020).

    CAS  Article  Google Scholar 

  • 34.

    Xu, Z. W. et al. Soil enzyme activity and stoichiometry in forest ecosystems along the North–South Transect in eastern China (NSTEC). Soil Biol. Biochem. 104, 152–163 (2017).

    CAS  Article  Google Scholar 

  • 35.

    Teng, Z. D., Zhu, Y. Y., Li, M. & Whelan, M. J. Microbial community composition and activity controls phosphorus transformation in rhizosphere soils of the Yeyahu Wetland in Beijing, China. Sci. Total Environ. 628–629, 1266–1277 (2018).

    PubMed  Article  ADS  CAS  PubMed Central  Google Scholar 

  • 36.

    Chadwick, O. A., Kelly, E. F., Hotchkiss, S. C. & Vitousek, P. M. Precontact vegetation and soil nutrient status in the shadow of Kohala Volcano, Hawaii. Geomorphology 89, 70–83 (2007).

    Article  ADS  Google Scholar 

  • 37.

    Wang, Y. P., Law, R. M. & Pak, B. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 7, 2261–2282 (2010).

    CAS  Article  ADS  Google Scholar 

  • 38.

    Li, X., Chang, S. X., Liu, J., Zheng, Z. & Wang, X. Topography-soil relationships in a hilly evergreen broadleaf forest in subtropical China. J. Soil Sedim. 17, 1101–1115 (2016).

    Article  CAS  Google Scholar 

  • 39.

    Harrison, A. F. Soil Organic Phosphorus: A Review of World Literature 107–121 (Commonwealth Agricultural Bureaux International, Wallingford, 1987).

    Google Scholar 

  • 40.

    Tian, H. Regional carbon dynamics in monsoon Asia and its implications for the global carbon cycle. Global Planet. Change 37, 201–217 (2003).

    ADS  Google Scholar 

  • 41.

    He, X. J., Hou, E. Q., Liu, Y. & Wen, D. Z. Altitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China. Sci. Rep. 6, 24261 (2016).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 42.

    Sundqvist, M. K., Sanders, N. J. & Wardle, D. A. Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change. Annu. Rev. Ecol. Evol. Syst. 44, 261–280 (2013).

    Article  Google Scholar 

  • 43.

    Korner, C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22, 569–574 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    McGill, W. B. & Cole, C. V. Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26, 267–286 (1981).

    CAS  Article  ADS  Google Scholar 

  • 45.

    Ippolito, J. A. et al. Phosphorus biogeochemistry across a precipitation gradient in grasslands of central North America. J. Arid Environ. 74, 954–961 (2010).

    Article  ADS  Google Scholar 

  • 46.

    Li, K. et al. Long term increasing productivity of high-elevation grassland caused by elevated precipitation and temperature. Rangel. Ecol. Manag. 73, 156–161 (2020).

    Article  Google Scholar 

  • 47.

    Alizamir, M. et al. Advanced machine learning model for better prediction accuracy of soil temperature at different depths. PLoS One 15, e0231055 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Vitousek, P. M. & Chadwick, O. A. Pedogenic thresholds and soil process domains in basalt-derived soils. Ecosystems 16, 1379–1395 (2013).

    CAS  Article  Google Scholar 

  • 49.

    Tang, Z. Y. et al. Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Proc. Natl. Acad. Sci. U. S. A. 115, 4033–4038 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Fang, J. et al. Forest community survey and the structural characteristics of forests in China. Ecography 35, 1059–1071 (2012).

    Article  Google Scholar 

  • 51.

    Tang, X. et al. Carbon pools in China’s terrestrial ecosystems: new estimates based on an intensive field survey. Proc. Natl. Acad. Sci. U. S. A. 115, 4021–4026 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Wu, T. et al. Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century. J. Geophys. Res. Atmos. 118, 4326–4347 (2013).

    CAS  Article  ADS  Google Scholar 

  • 53.

    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Liaw, K. A. & Wiener, M. Classification and regression by randomForest. R News 23, 18–22 (2002).

    Article  Google Scholar 

  • 55.

    Pedro, P.-N., Pierre, L., Stéphane, D. & Daniel, B. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).

    Article  Google Scholar 

  • 56.

    Oksanen, J. et al. Vegan: Community Ecology Package, R Package Version 2.3-0. https://cran.r-project.org/web/packages/vegan/ (2015).


  • Source: Ecology - nature.com

    Startup empowers women to improve access to safe drinking water

    Multifaceted characteristics of dryland aridity changes in a warming world