in

Substituting chemical P fertilizer with organic manure: effects on double-rice yield, phosphorus use efficiency and balance in subtropical China

  • 1.

    Kazunori, M. et al. Prediction of future methane emission from irrigated rice paddies in central Thailand under different water management practices. Sci. Total Environ. 566, 641–651 (2016).

    Google Scholar 

  • 2.

    FAOSTAT. http://www.fao.org/statistics/zh. (2018).

  • 3.

    Xu, L. et al. Effects of different fertilization treatment on paddy soil nutrients in red soil hilly region. J. Nat. Resour. 27, 1890–1898 (2012) (In Chinese).

    Google Scholar 

  • 4.

    National Bureau of Statistics of China. China Statistical Yearbook (China Statistics Press, 2010) (In Chinese).

    Google Scholar 

  • 5.

    Li, H. G. et al. Past, present, and future use of phosphorus in Chinese agriculture and its influence on phosphorus losses. Ambio 44, S274–S285 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 6.

    Withers, P. J. A. et al. Stewardship to tackle global phosphorus inefficiency: The case of Europe. Ambio 44(Suppl. 2), 193–206 (2015).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 7.

    Huang, Q. H. et al. Effects of long-term organic amendments on soil organic carbon in a paddy field: A case study on red soil. J. Integr. Agric. 13, 570–576 (2014).

    Article 

    Google Scholar 

  • 8.

    Wang, H. et al. Effects of long-term application of organic fertilizer on improving organic matter content and retarding acidity in red soil from China. Soil Tillage Res. 195, 104382 (2019).

    Article 

    Google Scholar 

  • 9.

    Qaswar, M. et al. Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil. Soil Tillage Res. 198, 104569 (2020).

    Article 

    Google Scholar 

  • 10.

    Blake, L. et al. Phosphorus content in soil, uptake by plants and balance in three European long-term field experiments. Nutr. Cycl. Agroecosyst. 56, 263–275 (2000).

    Article 

    Google Scholar 

  • 11.

    Dawe, D., Dobermann, A., Ladha, J. K. & Zhen, Q. X. Do organic amendments improve yield trends and profitability in intensive rice systems?. Field Crop. Res. 83, 191–213 (2003).

    Article 

    Google Scholar 

  • 12.

    Nziguheba, G., Merckx, R. & Palm, C. A. Soil phosphorus dynamics and maize response to different rates of phosphorus fertilizer applied to an acrisol in Western Kenya. Plant Soil 243, 1–10 (2002).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Xu, M. G. et al. Effects of organic manure application with chemical fertilizers on nutrient absorption and yield of rice in hunan of Southern China. Agric. Sci. China 7, 1245–1252 (2008).

    Article 

    Google Scholar 

  • 14.

    Bi, L. et al. Long-term effects of organic amendments on the rice yields for double rice cropping systems in subtropical China. Agric. Ecosyst. Environ. 129, 534–541 (2009).

    Article 

    Google Scholar 

  • 15.

    Zhao, B. Q. et al. Long-term fertilizer experiment network in China: Crop yields and soil nutrient trends. Agron. J. 102, 216–230 (2010).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Gao, Y. et al. Phosphorus and carbon competitive sorption-desorption and associated non-point loss respond to natural rainfall events. J. Hydrol. 517, 447–457 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 17.

    Powers, S. M. et al. Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nat. Geosci. 9, 353–356 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Abe, S. S. et al. Excessive application of farmyard manure reduces rice yield and enhances environmental pollution risk in paddy fields. Arch. Agron. Soil Sci. 62, 1208–1221 (2016).

    Article 

    Google Scholar 

  • 19.

    Sato, S. & Comerford, N. B. Influence of soil pH on inorganic phosphorus sorption and desorption in a humid Brazilian ultisol. Rev. Bras. Ciênc. Solo 29, 685–694 (2005).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Shasheen, S. & Tsadilas, C. Phosphorus sorption and availability to canola grown in an alfisol amended with various soil amendments. Commun. Soil Sci. Plan. 44, 89–103 (2013).

    Article 
    CAS 

    Google Scholar 

  • 21.

    Shepherd, M. A. & Withers, P. J. Applications of poultry litter and triple superphosphate fertilizer to a sandy soil: Effects on soil phosphorus status and profile distribution. Nutr. Cycl. Agroecosyst. 54, 233–242 (1999).

    Article 

    Google Scholar 

  • 22.

    Morteza, Y., Javad, S. & Mahmood, S. S. On dealing with the pollution costs in agriculture: A case study of paddy fields. Sci. Total Environ. 556, 310–318 (2016).

    Article 
    CAS 

    Google Scholar 

  • 23.

    Zhang, N.M., Li, C.X. & Li, Y.H. Accumulation and releasing risk of phosphorus in soils in Dianchi watershed. Soils 39, 665–667. (2007). (in Chinese).

  • 24.

    Zhang, Z. J., Zhang, J. Y., He, R., Wang, Z. D. & Zhu, Y. M. Phosphorus interception in floodwater of paddy field during the rice-growing season in TaiHu Lake Basin. Environ. Pollut. 145, 425–433 (2007) (In Chinese).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Hua, L. et al. Risks of phosphorus runoff losses from five Chinese paddy soils under conventional management practices. Agric. Ecosyst. Environ. 245, 112–123 (2017).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Shi, W. et al. Source-sink dynamics and proteomic reprogramming under elevated night temperature and their impact on rice yield and grain quality. New Phytol. 197, 825–837 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Andriamananjara, A. et al. Farmyard manure application in weathered upland soils of Madagascar sharply increase phosphate fertilizer use efficiency for upland rice. Field Crop. Res. 222, 94–100 (2018).

    Article 

    Google Scholar 

  • 29.

    Andriamananjara, A. et al. Farmyard manure improves phosphorus use efficiency in weathered P deficient soil. Nutr. Cycl. Agroecosyst. 115, 407–425 (2019).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Seufert, V., Ramankutty, N. & Foley, J. A. Comparing the yields of organic and conventional agriculture. Nature 485, 229-U113 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Xin, X. et al. Yield, phosphorus use efficiency and balance response to substituting long-term chemical fertilizer use with organic manure in a wheat-maize system. Field Crop. Res. 208, 27–33 (2017).

    Article 

    Google Scholar 

  • 32.

    Aggarwal, R. K. & Power, J. F. Use of crop residue and manure to conserve water and enhance nutrient availability and pearl millet yields in an arid tropical region. Soil Tillage Res. 41, 43–51 (1997).

    Article 

    Google Scholar 

  • 33.

    Rehman, A., Ullah, A., Nadeem, F. & Farooq, M. Sustainable nutrient management. In Innovations in Sustainable Agriculture 167–211 (Springer, 2019).

  • 34.

    Whalen, J. K., Chang, C., Clayton, G. W. & Carefoot, J. P. Cattle manure amendments can increase the pH of acid soils. Soil Sci. Soc. Am. J. 64, 962–966 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 35.

    Mowrer, J., Endale, D. M., Schomberg, H. H., Norris, S. E. & Woodroof, R. H. Liming potential of poultry litter in a long-term tillage comparison study. Soil Tillage Res. 196, 104446 (2020).

    Article 

    Google Scholar 

  • 36.

    Miller, J., Beasley, B., Drury, C., Larney, F. & Hao, X. Y. Influence of long-term application of composted or stockpiled feedlot manure with straw or wood chips on soil cation exchange capacity. Compos. Sci. Util. 24, 54–60 (2016).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Liang, Y. et al. Organic manure stimulates biological activity and barley growth in soil subject to secondary salinization. Soil Biol. Biochem. 37, 1185–1195 (2005).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Güsewell, S. N:P ratios in terrestrial plants: Variation and functional significance. New Phytol. 164, 243–266 (2004).

    Article 

    Google Scholar 

  • 39.

    Khan, F. et al. Effect of different levels of nitrogen and phosphorus on the phenology and yield of maize varieties. Am. J. Plant Sci. 5, 2582–2590 (2014).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Luo, X. et al. Nitrogen: Phosphorous supply ratio and allometry in five alpine plant species. Ecol. Evol. 6, 8881–8892 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Güsewell, S. Responses of wetland graminoids to the relative supply of nitrogen and phosphorus. Plant Ecol. 176, 35–55 (2005).

    Article 

    Google Scholar 

  • 42.

    Hu, B. et al. Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nat. Plants 5, 401–413 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Zhang, W. F. et al. Efficiency, economics, and environmental implications of phosphorus resource use and the fertilizer industry in China. Nutr. Cycl. Agroecosyst. 80, 131–144 (2008).

    Article 

    Google Scholar 

  • 44.

    Andriamananjara, A. et al. Land management modifies the temperature sensitivity of soil organic carbon, nitrogen and phosphorus dynamics in a Ferralsol. Appl. Soil Ecol. 138, 112–122 (2019).

    Article 

    Google Scholar 

  • 45.

    Nziguheba, G., Merckx, R., Palm, C. A. & Rao, M. R. Organic residues affect phosphorus availability and maize yields in a Nitisol of Western Kenya. Biol. Fertil. Soils 32, 328–339 (2000).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Peretyazhko, T. & Sposito, G. Iron(III) reduction and phosphorous solubilization in humid tropical forest soils. Geochim. Cosmochim. Acta 69, 3643–3652 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 47.

    Wright, A. L. Soil phosphorus stocks and distribution in chemical fractions for long-term sugarcane, pasture, turfgrass, and forest systems in Florida. Nutr. Cycl. Agroecosyst. 83, 223–231 (2009).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Zhong, X. et al. The evaluation of phosphorus leaching risk of 23 Chinese soils I. Leaching criterion. Acta Ecol. Sin. 24, 2275–2280 (2004).

    Google Scholar 

  • 49.

    Wang, S. et al. Phosphorus loss potential and phosphatase activity under phosphorus fertilization in long-term paddy wetland agroecosystems. Soil Sei. Soc. Am. J. 6, 161–167 (2012).

    Article 
    CAS 

    Google Scholar 

  • 50.

    Haynes, R. J. & Mokolobate, M. S. Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: A critical review of the phenomenon and the mechanisms involved. Nutr. Cycl. Agroecosyst. 59, 47–63 (2001).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Ayaga, G., Todd, A. & Brookes, P. C. Enhanced biological cycling of phosphorus increases its availability to crops in low-input sub-Saharan farming systems. Soil Biol. Biochem. 38, 81–90 (2006).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Nie, J., Zhou, J., Wang, H., Chen, X. & Du, C. Effect of long-term rice straw return on soil glomalin, carbon and nitrogen. Pedosphere 17, 295–302 (2007).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Yu, Y. et al. Responses of paddy soil bacterial community assembly to different long-term fertilizations in southeast China. Sci. Total Environ. 656, 625–633 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    Murphy, J. & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. A. 27, 31–36 (1962).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Kitson, R. E. & Mellon, M. G. Colorimetric determination of phosphorus as molybdivanadophosporic acid. Ind. Eng. Chem. Anal. Ed. 16, 379–383 (1944).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Soon, Y. K. & Kalra, Y. P. A comparison of plant tissue digestion methods for nitrogen and phosphorus analyses. Can. J. Soil Sci. 75, 243–245 (1995).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Electrifying cement with nanocarbon black

    In-stream turbines for rethinking hydropower development in the Amazon basin