Mann, K. H. & Lazier, J. R. N. Dynamics of marine ecosystems: Biological-physical interactions in the oceans. Blackwell Sci. Publ. https://doi.org/10.2307/2960585 (1996).
Google Scholar
Ryther, J. Photosynthesis and fish production in the sea. Science 166, 72–76 (1969).
Google Scholar
Cushing, D. H. Plankton production and year-class strength in fish populations: An update of the match/mismatch hypothesis. Adv. Mar. Biol. 9, 255–334 (1990).
Google Scholar
Ekman, V. W. On the influence of the earth’s rotation on ocean-currents. (1905).
Grémillet, D. et al. Spatial match-mismatch in the Benguela upwelling zone: Should we expect chlorophyll and sea-surface temperature to predict marine predator distributions?. J. Appl. Ecol. 45, 610–621 (2008).
Google Scholar
Block, B. A. et al. Tracking apex marine predator movements in a dynamic ocean. Nature 475, 86–90 (2011).
Google Scholar
Silber, G. K. et al. Projecting marine mammal distribution in a changing climate. Front. Mar. Sci. 4, 413 (2017).
Google Scholar
Maxwell, S. M. et al. Dynamic ocean management: Defining and conceptualizing real-time management of the ocean. Mar. Policy 58, 42–50 (2015).
Google Scholar
Becker, E. A. et al. Moving towards dynamic ocean management: How well do modeled ocean products predict species distributions?. Remote Sens. 8, 149 (2016).
Google Scholar
Hazen, E. L. et al. A dynamic ocean management tool to reduce bycatch and support sustainable fisheries. Sci. Adv. 4, 1–7 (2018).
Google Scholar
Abrahms, B. et al. Dynamic ensemble models to predict distributions and anthropogenic risk exposure for highly mobile species. Divers. Distrib. https://doi.org/10.1111/ddi.12940 (2019).
Google Scholar
Oestreich, W. K., Chapman, M. S. & Crowder, L. B. A comparative analysis of dynamic management in marine and terrestrial systems. Front. Ecol. Environ. 18, 496–504 (2020).
Google Scholar
Redfern, J. V. et al. Techniques for cetacean-habitat modeling. Mar. Ecol. Prog. Ser. 310, 271–295 (2006).
Google Scholar
Becker, E. A. et al. Comparing California current cetacean-habitat models developed using in situ and remotely sensed sea surface temperature data. Mar. Ecol. Prog. Ser. 413, 163–183 (2010).
Google Scholar
Palacios, D. M. et al. Ecological correlates of blue whale movement behavior and its predictability in the California Current Ecosystem during the summer-fall feeding season. Mov. Ecol. 7, 1–21 (2019).
Google Scholar
Thompson, S. A. et al. Linking predators to seasonality of upwelling: Using food web indicators and path analysis to infer trophic connections. Prog. Oceanogr. 101, 106–120 (2012).
Google Scholar
Fiedler, P. C. et al. Blue whale habitat and prey in the California Channel Islands. Deep Res. Part II Top. Stud. Oceanogr. 45, 1781–1801 (1998).
Google Scholar
Buchan, S. J. & Quiñones, R. A. First insights into the oceanographic characteristics of a blue whale feeding ground in northern Patagonia, Chile. Mar. Ecol. Prog. Ser. 554, 183–199 (2016).
Google Scholar
Gill, P. C. et al. Blue whale habitat selection and within-season distribution in a regional upwelling system off southern Australia. Mar. Ecol. Prog. Ser. 421, 243–263 (2011).
Google Scholar
de Vos, A., Pattiaratchi, C. B. & Wijeratne, E. M. S. Surface circulation and upwelling patterns around Sri Lanka. Biogeosciences Discuss. 10, 14953–14998 (2013).
Google Scholar
Barlow, D. R., Bernard, K. S., Escobar-Flores, P., Palacios, D. M. & Torres, L. G. Links in the trophic chain: Modeling functional relationships between in situ oceanography, krill, and blue whale distribution under different oceanographic regimes. Mar. Ecol. Prog. Ser. 642, 207–225 (2020).
Google Scholar
Williams, T. M., Haun, J., Davis, R. W., Fuiman, L. A. & Kohin, S. A killer appetite: Metabolic consequences of carnivory in marine mammals. Comp. Biochem. Physiol. Part A 129, 785–796 (2001).
Google Scholar
Goldbogen, J. A. et al. Mechanics, hydrodynamics and energetics of blue whale lunge feeding: Efficiency dependence on krill density. J. Exp. Biol. 214, 131–146 (2011).
Google Scholar
Croll, D. A. et al. From wind to whales: Trophic links in a coastal upwelling system. Mar. Ecol. Prog. Ser. 289, 117–130 (2005).
Google Scholar
Hazen, E. L., Friedlaender, A. S. & Goldbogen, J. A. Blue whales (Balaenoptera musculus) optimize foraging efficiency by balancing oxygen use and energy gain as a function of prey density. Sci. Adv. 1, e1500469–e1500469 (2015).
Google Scholar
Nickels, C. F., Sala, L. M. & Ohman, M. D. The morphology of euphausiid mandibles used to assess selective predation by blue whales in the southern sector of the California Current System. J. Crustac. Biol. 38, 563–573 (2018).
Google Scholar
Abrahms, B. et al. Memory and resource tracking drive blue whale migrations. Proc. Natl. Acad. Sci. USA 116, 5582–5587 (2019).
Google Scholar
Visser, F., Hartman, K. L., Pierce, G. J., Valavanis, V. D. & Huisman, J. Timing of migratory baleen whales at the azores in relation to the north atlantic spring bloom. Mar. Ecol. Prog. Ser. 440, 267–279 (2011).
Google Scholar
Fossette, S. et al. Resource partitioning facilitates coexistence in sympatric cetaceans in the California Current. Ecol. Evol. 7, 9085–9097 (2017).
Google Scholar
Szesciorka, A. R. et al. Timing is everything: Drivers of interannual variability in blue whale migration. Sci. Rep. 10, 1–9 (2020).
Google Scholar
Botsford, L. W., Lawrence, C. A., Dever, E. P., Hastings, A. & Largier, J. Wind strength and biological productivity in upwelling systems: An idealized study. Fish. Oceanogr. 12, 245–259 (2003).
Google Scholar
Botsford, L. W., Lawrence, C. A., Dever, E. P., Hastings, A. & Largier, J. Effects of variable winds on biological productivity on continental shelves in coastal upwelling systems. Deep Res. Part II Top. Stud. Oceanogr. 53, 3116–3140 (2006).
Google Scholar
Cury, P. & Roy, C. Optimal environmental window and pelagic fish recruitment success in upwelling areas. Can. J. Fish. Aquat. Sci. 46, 670–680 (1989).
Google Scholar
Yokomizo, H., Botsford, L. W., Holland, M. D., Lawrence, C. A. & Hastings, A. Optimal wind patterns for biological production in shelf ecosystems driven by coastal upwelling. Theor. Ecol. 3, 53–63 (2010).
Google Scholar
Nieblas, A. E., Sloyan, B. M., Hobday, A. J., Coleman, R. & Richardson, A. J. Variability of biological production in low wind-forced regional upwelling systems: A case study off southeastern Australia. Limnol. Oceanogr. 54, 1548–1558 (2009).
Google Scholar
Stevens, C. L., O’Callaghan, J. M., Chiswell, S. M. & Hadfield, M. G. Physical oceanography of New Zealand/Aotearoa shelf seas: A review. N. Z. J. Mar. Freshw. Res. 1, 40. https://doi.org/10.1080/00288330.2019.1588746 (2019).
Google Scholar
Heath, R. R. & Gilmour, A. E. Flow and hydrological variability in the Kahurangi plume off north-west South Island, New Zealand. N. Z. J. Mar. Freshw. Res. 21, 125–140 (1987).
Google Scholar
Shirtcliffe, T. G. L. et al. Dynamics of the Cape Farewell upwelling plume, New Zealand. N. Z. J. Mar. Freshw. Res. 24, 555–568 (1990).
Google Scholar
Chiswell, S. M., Zeldis, J. R., Hadfield, M. G. & Pinkerton, M. H. Wind-driven upwelling and surface chlorophyll blooms in Greater Cook Strait. N. Z. J. Mar. Freshw. Res. 51, 465–489 (2017).
Google Scholar
Bradford-Grieve, J. M., Murdoch, R. C. & Chapman, B. E. Composition of macrozooplankton assemblages associated with the formation and decay of pulses within an upwelling plume in greater cook strait, New Zealand. N. Z. J. Mar. Freshw. Res. 27, 1–22 (1993).
Google Scholar
Bradford, J. M. & Chapman, B. Nyctiphanes australis (euphausiacea) and an upwelling plume in Western Cook Strait, New Zealand. N. Z. J. Mar. Freshw. Res. 22, 237–247 (1988).
Google Scholar
Torres, L. G. Evidence for an unrecognised blue whale foraging ground in New Zealand. N. Z. J. Mar. Freshw. Res. 47, 235–248 (2013).
Google Scholar
Barlow, D. R. et al. Documentation of a New Zealand blue whale population based on multiple lines of evidence. Endanger. Species Res. 36, 27–40 (2018).
Google Scholar
Torres, L. G., Barlow, D. R., Chandler, T. E. & Burnett, J. D. Insight into the kinematics of blue whale surface foraging through drone observations and prey data. PeerJ 8, e8906 (2020).
Google Scholar
Seers, B. & Shears, N. New Zealand’s Climate Data in R: An Introduction to clifro. (2015).
Tsagris, M., Athineou, G., Sajib, A., Amson, E. & Waldstein, M. Directional: Directional Statistics. R package version 4.3. (2020).
Mendelssohn, R. rerddapXtracto: Extracts Environmental Data from ‘ERDDAP’ Web Services. (2019).
Calupca, T. A., Fristrup, K. M. & Clark, C. W. A compact digital recording system for autonomous bioacoustic monitoring. J. Acoust. Soc. Am. 108, 2582 (2000).
Google Scholar
Oleson, E. M. et al. Behavioral context of call production by eastern North Pacific blue whales. Mar. Ecol. Prog. Ser. 330, 269–284 (2007).
Google Scholar
McDonald, M. A. An acoustic survey of baleen whales off Great Barrier Island, New Zealand. N. Z. J. Mar. Freshw. Res. 40, 519–529 (2006).
Google Scholar
Mellinger, D. K. & Clark, C. W. Recognizing transient low-frequency whale sounds by spectrogram correlation. J. Acoust. Soc. Am. 107, 3518–3529 (2000).
Google Scholar
Center for Conservation Bioacoustics. Raven Pro: Interactive Sound Analysis Software. (2019).
Mellinger, D. K., Roch, M. A., Nosal, E.-M. & Klinck, H. Signal processing. In Listening in the Ocean (eds Au, W. W. L. & Lammers, M. O.) 359–409 (Springer, Berlin, 2016).
Fregosi, S. et al. Comparison of fin whale 20 Hz call detections by deep-water mobile autonomous and stationary recorders. J. Acoust. Soc. Am. 147, 961–977 (2020).
Google Scholar
Collins, M. D. A split-step Pade solution for the parabolic equation method. J. Acoust. Soc. Am. 93, 1736–1742 (1993).
Google Scholar
Amante, C. & Eakins, B. W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24 (2009).
Wentworth, C. K. A scale of grade and class terms for clastic sediments. J. Geol. 30, 377–392 (1922).
Google Scholar
Bostock, H. et al. Distribution of surficial sediments in the ocean around New Zealand/Aotearoa. Part B: continental shelf. N. Z. J. Geol. Geophys. 62, 24–45 (2019).
Google Scholar
Samaran, F., Guinet, C., Adam, O., Motsch, J.-F. & Cansi, Y. Source level estimation of two blue whale subspecies in southwestern Indian Ocean. J. Acoust. Soc. Am. 127, 3800–3808 (2010).
Google Scholar
Holmes, E. E., Scheuerell, M. D. & Ward, E. J. Applied Time Series Analysis for Fisheries and Environmental Data (NOAA Fisheries, 2018).
Chiswell, S. M. & Sutton, P. J. H. Relationships between long-term ocean warming, marine heat waves and primary production in the New Zealand region. N. Z. J. Mar. Freshw. Res. https://doi.org/10.1080/00288330.2020.1713181 (2020).
Google Scholar
Santora, J. A., Reiss, C. S., Loeb, V. J. & Veit, R. R. Spatial association between hotspots of baleen whales and demographic patterns of Antarctic krill Euphausia superba suggests size-dependent predation. Mar. Ecol. Prog. Ser. 405, 255–269 (2010).
Google Scholar
Goetz, K. T. et al. Satellite Tracking of Blue Whales in New Zealand Waters, 2018 Voyage Report. (2018).
Double, M. C. et al. Cruise report of the 2013 Antarctic blue whale voyage of the Southern Ocean Research Partnership. Int. Whal. Comm. SC/65a/SH21 1–16 (2013).
Chenillat, F., Rivière, P., Capet, X., Franks, P. J. S. & Blanke, B. California coastal upwelling onset variability: Cross-shore and bottom-up propagation in the planktonic ecosystem. PLoS ONE 8, e6281 (2013).
Google Scholar
Benoit-Bird, K. J., Waluk, C. M. & Ryan, J. P. Forage species swarm in response to coastal upwelling. Geophys. Res. Lett. 46, 1537–1546 (2019).
Google Scholar
Source: Ecology - nature.com