in

Temporal and spatial lags between wind, coastal upwelling, and blue whale occurrence

  • 1.

    Mann, K. H. & Lazier, J. R. N. Dynamics of marine ecosystems: Biological-physical interactions in the oceans. Blackwell Sci. Publ. https://doi.org/10.2307/2960585 (1996).

    Article 

    Google Scholar 

  • 2.

    Ryther, J. Photosynthesis and fish production in the sea. Science 166, 72–76 (1969).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Cushing, D. H. Plankton production and year-class strength in fish populations: An update of the match/mismatch hypothesis. Adv. Mar. Biol. 9, 255–334 (1990).

    Article 

    Google Scholar 

  • 4.

    Ekman, V. W. On the influence of the earth’s rotation on ocean-currents. (1905).

  • 5.

    Grémillet, D. et al. Spatial match-mismatch in the Benguela upwelling zone: Should we expect chlorophyll and sea-surface temperature to predict marine predator distributions?. J. Appl. Ecol. 45, 610–621 (2008).

    Article 
    CAS 

    Google Scholar 

  • 6.

    Block, B. A. et al. Tracking apex marine predator movements in a dynamic ocean. Nature 475, 86–90 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Silber, G. K. et al. Projecting marine mammal distribution in a changing climate. Front. Mar. Sci. 4, 413 (2017).

    Article 

    Google Scholar 

  • 8.

    Maxwell, S. M. et al. Dynamic ocean management: Defining and conceptualizing real-time management of the ocean. Mar. Policy 58, 42–50 (2015).

    Article 

    Google Scholar 

  • 9.

    Becker, E. A. et al. Moving towards dynamic ocean management: How well do modeled ocean products predict species distributions?. Remote Sens. 8, 149 (2016).

    ADS 
    Article 

    Google Scholar 

  • 10.

    Hazen, E. L. et al. A dynamic ocean management tool to reduce bycatch and support sustainable fisheries. Sci. Adv. 4, 1–7 (2018).

    Article 

    Google Scholar 

  • 11.

    Abrahms, B. et al. Dynamic ensemble models to predict distributions and anthropogenic risk exposure for highly mobile species. Divers. Distrib. https://doi.org/10.1111/ddi.12940 (2019).

    Article 

    Google Scholar 

  • 12.

    Oestreich, W. K., Chapman, M. S. & Crowder, L. B. A comparative analysis of dynamic management in marine and terrestrial systems. Front. Ecol. Environ. 18, 496–504 (2020).

    Article 

    Google Scholar 

  • 13.

    Redfern, J. V. et al. Techniques for cetacean-habitat modeling. Mar. Ecol. Prog. Ser. 310, 271–295 (2006).

    ADS 
    Article 

    Google Scholar 

  • 14.

    Becker, E. A. et al. Comparing California current cetacean-habitat models developed using in situ and remotely sensed sea surface temperature data. Mar. Ecol. Prog. Ser. 413, 163–183 (2010).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Palacios, D. M. et al. Ecological correlates of blue whale movement behavior and its predictability in the California Current Ecosystem during the summer-fall feeding season. Mov. Ecol. 7, 1–21 (2019).

    Article 

    Google Scholar 

  • 16.

    Thompson, S. A. et al. Linking predators to seasonality of upwelling: Using food web indicators and path analysis to infer trophic connections. Prog. Oceanogr. 101, 106–120 (2012).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Fiedler, P. C. et al. Blue whale habitat and prey in the California Channel Islands. Deep Res. Part II Top. Stud. Oceanogr. 45, 1781–1801 (1998).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Buchan, S. J. & Quiñones, R. A. First insights into the oceanographic characteristics of a blue whale feeding ground in northern Patagonia, Chile. Mar. Ecol. Prog. Ser. 554, 183–199 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Gill, P. C. et al. Blue whale habitat selection and within-season distribution in a regional upwelling system off southern Australia. Mar. Ecol. Prog. Ser. 421, 243–263 (2011).

    ADS 
    Article 

    Google Scholar 

  • 20.

    de Vos, A., Pattiaratchi, C. B. & Wijeratne, E. M. S. Surface circulation and upwelling patterns around Sri Lanka. Biogeosciences Discuss. 10, 14953–14998 (2013).

    ADS 

    Google Scholar 

  • 21.

    Barlow, D. R., Bernard, K. S., Escobar-Flores, P., Palacios, D. M. & Torres, L. G. Links in the trophic chain: Modeling functional relationships between in situ oceanography, krill, and blue whale distribution under different oceanographic regimes. Mar. Ecol. Prog. Ser. 642, 207–225 (2020).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Williams, T. M., Haun, J., Davis, R. W., Fuiman, L. A. & Kohin, S. A killer appetite: Metabolic consequences of carnivory in marine mammals. Comp. Biochem. Physiol. Part A 129, 785–796 (2001).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Goldbogen, J. A. et al. Mechanics, hydrodynamics and energetics of blue whale lunge feeding: Efficiency dependence on krill density. J. Exp. Biol. 214, 131–146 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Croll, D. A. et al. From wind to whales: Trophic links in a coastal upwelling system. Mar. Ecol. Prog. Ser. 289, 117–130 (2005).

    ADS 
    Article 

    Google Scholar 

  • 25.

    Hazen, E. L., Friedlaender, A. S. & Goldbogen, J. A. Blue whales (Balaenoptera musculus) optimize foraging efficiency by balancing oxygen use and energy gain as a function of prey density. Sci. Adv. 1, e1500469–e1500469 (2015).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 26.

    Nickels, C. F., Sala, L. M. & Ohman, M. D. The morphology of euphausiid mandibles used to assess selective predation by blue whales in the southern sector of the California Current System. J. Crustac. Biol. 38, 563–573 (2018).

    Article 

    Google Scholar 

  • 27.

    Abrahms, B. et al. Memory and resource tracking drive blue whale migrations. Proc. Natl. Acad. Sci. USA 116, 5582–5587 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Visser, F., Hartman, K. L., Pierce, G. J., Valavanis, V. D. & Huisman, J. Timing of migratory baleen whales at the azores in relation to the north atlantic spring bloom. Mar. Ecol. Prog. Ser. 440, 267–279 (2011).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Fossette, S. et al. Resource partitioning facilitates coexistence in sympatric cetaceans in the California Current. Ecol. Evol. 7, 9085–9097 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Szesciorka, A. R. et al. Timing is everything: Drivers of interannual variability in blue whale migration. Sci. Rep. 10, 1–9 (2020).

    Article 
    CAS 

    Google Scholar 

  • 31.

    Botsford, L. W., Lawrence, C. A., Dever, E. P., Hastings, A. & Largier, J. Wind strength and biological productivity in upwelling systems: An idealized study. Fish. Oceanogr. 12, 245–259 (2003).

    Article 

    Google Scholar 

  • 32.

    Botsford, L. W., Lawrence, C. A., Dever, E. P., Hastings, A. & Largier, J. Effects of variable winds on biological productivity on continental shelves in coastal upwelling systems. Deep Res. Part II Top. Stud. Oceanogr. 53, 3116–3140 (2006).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Cury, P. & Roy, C. Optimal environmental window and pelagic fish recruitment success in upwelling areas. Can. J. Fish. Aquat. Sci. 46, 670–680 (1989).

    Article 

    Google Scholar 

  • 34.

    Yokomizo, H., Botsford, L. W., Holland, M. D., Lawrence, C. A. & Hastings, A. Optimal wind patterns for biological production in shelf ecosystems driven by coastal upwelling. Theor. Ecol. 3, 53–63 (2010).

    Article 

    Google Scholar 

  • 35.

    Nieblas, A. E., Sloyan, B. M., Hobday, A. J., Coleman, R. & Richardson, A. J. Variability of biological production in low wind-forced regional upwelling systems: A case study off southeastern Australia. Limnol. Oceanogr. 54, 1548–1558 (2009).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Stevens, C. L., O’Callaghan, J. M., Chiswell, S. M. & Hadfield, M. G. Physical oceanography of New Zealand/Aotearoa shelf seas: A review. N. Z. J. Mar. Freshw. Res. 1, 40. https://doi.org/10.1080/00288330.2019.1588746 (2019).

    Article 

    Google Scholar 

  • 37.

    Heath, R. R. & Gilmour, A. E. Flow and hydrological variability in the Kahurangi plume off north-west South Island, New Zealand. N. Z. J. Mar. Freshw. Res. 21, 125–140 (1987).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Shirtcliffe, T. G. L. et al. Dynamics of the Cape Farewell upwelling plume, New Zealand. N. Z. J. Mar. Freshw. Res. 24, 555–568 (1990).

    Article 

    Google Scholar 

  • 39.

    Chiswell, S. M., Zeldis, J. R., Hadfield, M. G. & Pinkerton, M. H. Wind-driven upwelling and surface chlorophyll blooms in Greater Cook Strait. N. Z. J. Mar. Freshw. Res. 51, 465–489 (2017).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Bradford-Grieve, J. M., Murdoch, R. C. & Chapman, B. E. Composition of macrozooplankton assemblages associated with the formation and decay of pulses within an upwelling plume in greater cook strait, New Zealand. N. Z. J. Mar. Freshw. Res. 27, 1–22 (1993).

    Article 

    Google Scholar 

  • 41.

    Bradford, J. M. & Chapman, B. Nyctiphanes australis (euphausiacea) and an upwelling plume in Western Cook Strait, New Zealand. N. Z. J. Mar. Freshw. Res. 22, 237–247 (1988).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Torres, L. G. Evidence for an unrecognised blue whale foraging ground in New Zealand. N. Z. J. Mar. Freshw. Res. 47, 235–248 (2013).

    Article 

    Google Scholar 

  • 43.

    Barlow, D. R. et al. Documentation of a New Zealand blue whale population based on multiple lines of evidence. Endanger. Species Res. 36, 27–40 (2018).

    Article 

    Google Scholar 

  • 44.

    Torres, L. G., Barlow, D. R., Chandler, T. E. & Burnett, J. D. Insight into the kinematics of blue whale surface foraging through drone observations and prey data. PeerJ 8, e8906 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Seers, B. & Shears, N. New Zealand’s Climate Data in R: An Introduction to clifro. (2015).

  • 46.

    Tsagris, M., Athineou, G., Sajib, A., Amson, E. & Waldstein, M. Directional: Directional Statistics. R package version 4.3. (2020).

  • 47.

    Mendelssohn, R. rerddapXtracto: Extracts Environmental Data from ‘ERDDAP’ Web Services. (2019).

  • 48.

    Calupca, T. A., Fristrup, K. M. & Clark, C. W. A compact digital recording system for autonomous bioacoustic monitoring. J. Acoust. Soc. Am. 108, 2582 (2000).

    ADS 
    Article 

    Google Scholar 

  • 49.

    Oleson, E. M. et al. Behavioral context of call production by eastern North Pacific blue whales. Mar. Ecol. Prog. Ser. 330, 269–284 (2007).

    ADS 
    Article 

    Google Scholar 

  • 50.

    McDonald, M. A. An acoustic survey of baleen whales off Great Barrier Island, New Zealand. N. Z. J. Mar. Freshw. Res. 40, 519–529 (2006).

    Article 

    Google Scholar 

  • 51.

    Mellinger, D. K. & Clark, C. W. Recognizing transient low-frequency whale sounds by spectrogram correlation. J. Acoust. Soc. Am. 107, 3518–3529 (2000).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Center for Conservation Bioacoustics. Raven Pro: Interactive Sound Analysis Software. (2019).

  • 53.

    Mellinger, D. K., Roch, M. A., Nosal, E.-M. & Klinck, H. Signal processing. In Listening in the Ocean (eds Au, W. W. L. & Lammers, M. O.) 359–409 (Springer, Berlin, 2016).

    Google Scholar 

  • 54.

    Fregosi, S. et al. Comparison of fin whale 20 Hz call detections by deep-water mobile autonomous and stationary recorders. J. Acoust. Soc. Am. 147, 961–977 (2020).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Collins, M. D. A split-step Pade solution for the parabolic equation method. J. Acoust. Soc. Am. 93, 1736–1742 (1993).

    ADS 
    Article 

    Google Scholar 

  • 56.

    Amante, C. & Eakins, B. W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24 (2009).

  • 57.

    Wentworth, C. K. A scale of grade and class terms for clastic sediments. J. Geol. 30, 377–392 (1922).

    ADS 
    Article 

    Google Scholar 

  • 58.

    Bostock, H. et al. Distribution of surficial sediments in the ocean around New Zealand/Aotearoa. Part B: continental shelf. N. Z. J. Geol. Geophys. 62, 24–45 (2019).

    Article 

    Google Scholar 

  • 59.

    Samaran, F., Guinet, C., Adam, O., Motsch, J.-F. & Cansi, Y. Source level estimation of two blue whale subspecies in southwestern Indian Ocean. J. Acoust. Soc. Am. 127, 3800–3808 (2010).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 60.

    Holmes, E. E., Scheuerell, M. D. & Ward, E. J. Applied Time Series Analysis for Fisheries and Environmental Data (NOAA Fisheries, 2018).

    Google Scholar 

  • 61.

    Chiswell, S. M. & Sutton, P. J. H. Relationships between long-term ocean warming, marine heat waves and primary production in the New Zealand region. N. Z. J. Mar. Freshw. Res. https://doi.org/10.1080/00288330.2020.1713181 (2020).

    Article 

    Google Scholar 

  • 62.

    Santora, J. A., Reiss, C. S., Loeb, V. J. & Veit, R. R. Spatial association between hotspots of baleen whales and demographic patterns of Antarctic krill Euphausia superba suggests size-dependent predation. Mar. Ecol. Prog. Ser. 405, 255–269 (2010).

    ADS 
    Article 

    Google Scholar 

  • 63.

    Goetz, K. T. et al. Satellite Tracking of Blue Whales in New Zealand Waters, 2018 Voyage Report. (2018).

  • 64.

    Double, M. C. et al. Cruise report of the 2013 Antarctic blue whale voyage of the Southern Ocean Research Partnership. Int. Whal. Comm. SC/65a/SH21 1–16 (2013).

  • 65.

    Chenillat, F., Rivière, P., Capet, X., Franks, P. J. S. & Blanke, B. California coastal upwelling onset variability: Cross-shore and bottom-up propagation in the planktonic ecosystem. PLoS ONE 8, e6281 (2013).

    Article 
    CAS 

    Google Scholar 

  • 66.

    Benoit-Bird, K. J., Waluk, C. M. & Ryan, J. P. Forage species swarm in response to coastal upwelling. Geophys. Res. Lett. 46, 1537–1546 (2019).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Old-growth forest carbon sinks overestimated

    MIT engineers make filters from tree branches to purify drinking water