in

The initial effects of microclimate and invertebrate exclusion on multi-site variation in the mass loss of temperate pine and oak deadwoods

  • 1.

    Harmon, M. E. et al. Ecology of coarse woody debris in temperate ecosystems. Adv. Ecol. Res. 15, 133–302 (1986).

    Article 

    Google Scholar 

  • 2.

    Lagomarsino, A. et al. Decomposition of black pine (Pinus nigra J. F. Arnold) deadwood and its impact on forest soil components. Sci. Total Environ. 754, 142039 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Magnússon, R. Í., Tietema, A., Cornelissen, J. H. C., Hefting, M. M. & Kalbitz, K. Tamm review: Sequestration of carbon from coarse woody debris in forest soils. For. Ecol. Manag. 377, 1–15 (2016).

    Article 

    Google Scholar 

  • 4.

    Vogt, K. Carbon budgets of temperate forest ecosystems. Tree Physiol. 9, 69–86 (1991).

    PubMed 
    Article 

    Google Scholar 

  • 5.

    Stutz, K. P. & Lang, F. Potentials and unknowns in managing coarse woody debris for soil functioning. Forests 8, 37 (2017).

    Article 

    Google Scholar 

  • 6.

    Ulyshen, M. D. et al. Below- and above-ground effects of deadwood and termites in plantation forests. Ecosphere 8, e01910 (2017).

    Article 

    Google Scholar 

  • 7.

    Siitonen, J. Ecology of woody debris in boreal forests. Ecol. Bull. 49, 11–41 (2001).

    Google Scholar 

  • 8.

    Pietsch, K. A. et al. Wood decomposition is more strongly controlled by temperature than by tree species and decomposer diversity in highly species rich subtropical forests. Oikos 128, 701–715 (2019).

    Article 

    Google Scholar 

  • 9.

    Rubenstein, M. A., Crowther, T. W., Maynard, D. S., Schilling, J. S. & Bradford, M. A. Decoupling direct and indirect effects of temperature on decomposition. Soil Biol. Biochem. 112, 110–116 (2017).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Hu, Z. et al. Traits mediate drought effects on wood carbon fluxes. Glob. Chang. Biol. 26, 3429–3442 (2020).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Yoon, T. K., Noh, N. J., Kim, S., Han, S. & Son, Y. Coarse woody debris respiration of Japanese red pine forests in Korea: controlling factors and contribution to the ecosystem carbon cycle. Ecol. Res. 30, 723–734 (2015).

    Article 

    Google Scholar 

  • 12.

    Wu, D., Pietsch, K. A., Staab, M. & Yu, M. Wood identity alters dominant factors driving fine wood decomposition along a tree diversity gradient in subtropical plantation forests. Biotropica 53, 643–657 (2021).

    Article 

    Google Scholar 

  • 13.

    Ohtsuka, T. et al. Role of coarse woody debris in the carbon cycle of Takayama forest, central Japan. Ecol. Res. 29, 91–101 (2014).

    Article 

    Google Scholar 

  • 14.

    Bradford, M. A. et al. Climate fails to predict wood decomposition at regional scales. Nat. Clim. Change 4, 625–630 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 15.

    Shorohova, E. & Kapitsa, E. Influence of the substrate and ecosystem attributes on the decomposition rates of coarse woody debris in European boreal forests. For. Ecol. Manag. 315, 173–184 (2014).

    Article 

    Google Scholar 

  • 16.

    Crockatt, M. E. & Bebber, D. P. Edge effects on moisture reduce wood decomposition rate in a temperate forest. Glob. Chang. Biol. 21, 698–707 (2015).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Dossa, G. G. O. et al. Quantifying the factors affecting wood decomposition across a tropical forest disturbance gradient. For. Ecol. Manag. 468, 118166 (2020).

    Article 

    Google Scholar 

  • 18.

    Eichenberg, D. et al. The effect of microclimate on wood decay is indirectly altered by tree species diversity in a litterbag study. J. Plant Ecol. 10, 170–178 (2017).

    Article 

    Google Scholar 

  • 19.

    Cornwell, W. K. et al. Plant traits and wood fates across the globe: Rotted, burned, or consumed?. Glob. Chang. Biol. 15, 2431–2449 (2009).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Warren, R. J. & Bradford, M. A. Ant colonization and coarse woody debris decomposition in temperate forests. Insect Soc. 59, 215–221 (2012).

    Article 

    Google Scholar 

  • 21.

    Acanakwo, E. F., Sheil, D. & Moe, S. R. Wood decomposition is more rapid on than off termite mounds in an African savanna. Ecosphere 10, e02554 (2019).

    Article 

    Google Scholar 

  • 22.

    Veldhuis, M. P., Laso, F. J., Olff, H. & Berg, M. P. Termites promote resistance of decomposition to spatiotemporal variability in rainfall. Ecology 98, 467–477 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 23.

    Liu, G. et al. Termites amplify the effects of wood traits on decomposition rates among multiple bamboo and dicot woody species. J. Ecol. 103, 1214–1223 (2015).

    Article 

    Google Scholar 

  • 24.

    Maynard, D. S., Crowther, T. W., King, J. R., Warren, R. J. & Bradford, M. A. Temperate forest termites: ecology, biogeography, and ecosystem impacts. Ecol. Entomol. 40, 199–210 (2015).

    Article 

    Google Scholar 

  • 25.

    Jacobsen, R. M., Sverdrup-Thygeson, A., Kauserud, H., Mundra, S. & Birkemoe, T. Exclusion of invertebrates influences saprotrophic fungal community and wood decay rate in an experimental field study. Funct. Ecol. 32, 2571–2582 (2018).

    Article 

    Google Scholar 

  • 26.

    Ulyshen, M. D., Wagner, T. L. & Mulrooney, J. E. Contrasting effects of insect exclusion on wood loss in a temperate forest. Ecosphere 5, 47 (2014).

    Article 

    Google Scholar 

  • 27.

    Box, E. O. & Fujiwara, K. A comparative look at bioclimatic zonation, vegetation types, tree taxa and species richness in northeast Asia. Bot. Pac. 1, 5–20 (2012).

    Article 

    Google Scholar 

  • 28.

    Lee, K.-S. & Jeong, S.-Y. Ecological characteristics of termite (Riticulitermes speratus kyshuensis) for preservation of wooden cultural heritage. Conserv. Stud. 37, 327–348 (2004) ((in Korean with English abstract)).

    Google Scholar 

  • 29.

    Cheesman, A. W., Cernusak, L. A. & Zanne, A. E. Relative roles of termites and saprotrophic microbes as drivers of wood decay: A wood block test. Austral Ecol. 43, 257–267 (2018).

    Article 

    Google Scholar 

  • 30.

    Stoklosa, A. M. et al. Effects of mesh bag enclosure and termites on fine woody debris decomposition in a subtropical forest. Basic Appl. Ecol. 17, 463–470 (2016).

    Article 

    Google Scholar 

  • 31.

    Ulyshen, M. D. Interacting effects of insects and flooding on wood decomposition. PLOS ONE 9, e101867 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Noh, N. J. et al. Carbon and nitrogen accumulation and decomposition from coarse woody debris in a naturally regenerated Korean red pine (Pinus densiflora S. et Z.) forest. Forests 8, 214 (2017).

    Article 

    Google Scholar 

  • 33.

    Yoon, T. K. et al. Coarse woody debris mass dynamics in temperate natural forests of Mt. Jumbong, Korea. J. Ecol. Field Biol. 34, 115–125 (2011).

    Article 

    Google Scholar 

  • 34.

    Park, S.-W., Baek, G., Byeon, H.-S., Kim, Y. S. & Kim, C. Carbon and nitrogen dynamics of wood stakes as affected by soil amendment treatments in a post-fire restoration area. Korean J. Agric. For. Meteorol. 20, 357–365 (2018) ((in Korean with English abstract)).

    Google Scholar 

  • 35.

    Ulyshen, M. D. Wood decomposition as influenced by invertebrates. Biol. Rev. 91, 70–85 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 36.

    Gentry, J. B. & Whitford, W. G. The relationship between wood litter infall and relative abundance and feeding activity of subterranean termites Reticulitermes spp. in three southeastern coastal plain habitats. Oecologia 54, 63–67 (1982).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Schuurman, G. Decomposition rates and termite assemblage composition in semiarid Africa. Ecology 86, 1236–1249 (2005).

    Article 

    Google Scholar 

  • 38.

    Weedon, J. T. et al. Global meta-analysis of wood decomposition rates: A role for trait variation among tree species?. Ecol. Lett. 12, 45–56 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 39.

    Yoon, T. K. et al. Effects of sample size and temperature on coarse woody debris respiration from Quercus variabilis logs. J. For. Res. 19, 249–259 (2014).

    Article 

    Google Scholar 

  • 40.

    Roh, Y. et al. Changes in the contribution of termites to mass loss of dead wood among three tree species during 23 months in a lowland tropical rainforest. Sociobiology 65, 59–66 (2018).

    Article 

    Google Scholar 

  • 41.

    Vasconcellos, A. & de Moura, F. M. S. Wood litter consumption by three species of Nasutitermes termites in an area of the Atlantic coastal forest in northeastern Brazil. J. Insect Sci. 10, 72 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Kim, S. et al. Differential effects of coarse woody debris on microbial and soil properties in Pinus densiflora Sieb. et Zucc. forests. Forests 8, 292 (2017).

    Article 

    Google Scholar 

  • 43.

    Kim, R.-H. et al. Coarse woody debris mass and nutrients in forest ecosystems of Korea. Ecol. Res. 21, 819–827 (2006).

    Article 

    Google Scholar 

  • 44.

    Korea Forest Service. Statistical Yearbook of Forestry. Korea Forest Service, Daejeon (2020) (in Korean)

  • 45.

    Hedges, L. V. & Olkin, I. Statistical methods for meta-analysis 75–106 (Academic Press, New York, 1985).

    MATH 
    Book 

    Google Scholar 

  • 46.

    Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: A practical guide for biologists. Biol. Rev. 82, 591–605 (2007).

    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Manipulating magnets in the quest for fusion

    Reducing emissions by decarbonizing industry