Hurka, H. et al. The Eurasian steppe belt: Status quo, origin and evolutionary history. Turczaninowia 22, 5–71 (2019).
Walter, H. Die Vegetation Osteuropas (Gustav Fischer Verlag, 1974).
Walter, H. Die Vegetation der Erde in öko-physiologischer Betrachtung , Band II : Die gemäßigten und arktischen Zonen, in ökologischer Betrachtung (Gustav Fischer Verlag, 1968).
Cohen, K. M. & Gibbard, P. L. Global chronostratigraphical correlation table for the last 2.7 million years, version 2019 QI-500. Quat. Int. 500, 20–31 (2019).
Google Scholar
Frenzel, B. Grundzüge der Pleistozänen Vegetationsgeschichte Nord-Euroasiens. Geogr. J. 136, 291 (1968).
Tarasov, P. E. et al. Last glacial maximum biomes reconstructed from pollen and plant macrofossil data from northern Eurasia. J. Biogeogr. 27, 609–620 (2000).
Google Scholar
Caves Rugenstein, J., Sjostrom, D., Mix, H., Winnick, M. & Chamberlain, C. Aridification of Central Asia and uplift of the Altai and Hangay Mountains, Mongolia: Stable isotope evidence. Am. J. Sci. 314, 1171–1201 (2014).
Google Scholar
Yanina, T., Sorokin, V., Bezrodnykh, Y. & Romanyuk, B. Late Pleistocene climatic events reflected in the Caspian Sea geological history (based on drilling data). Quat. Int. 465, 130–141 (2018).
Google Scholar
Dolukhanov, P. M., Chepalyga, A. L., Shkatova, V. K. & Lavrentiev, N. V. Late Quaternary Caspian: Sea-levels, environments and human settlement. Open Geogr. J. 2, 1–15 (2009).
Google Scholar
Tudryn, A. et al. Late Quaternary Caspian Sea environment: Late Khazarian and Early Khvalynian transgressions from the lower reaches of the Volga River. Quat. Int. 292, 193–204 (2013).
Google Scholar
Dengler, J., Janišová, M., Török, P. & Wellstein, C. Biodiversity of Palaearctic grasslands: A synthesis. Agric. Ecosyst. Environ. 182, 1–14 (2014).
Google Scholar
Hejcman, M., Hejcmanová, P., Pavlů, V. & Beneš, J. Origin and history of grasslands in Central Europe—a review. Grass Forage Sci. 68, 345–363 (2013).
Google Scholar
Franzke, A. et al. Molecular signals for Late Tertiary/Early Quaternary range splits of an Eurasian steppe plant: Clausia aprica (Brassicaceae). Mol. Ecol. 13, 2789–2795 (2004).
Google Scholar
Hurka, H., Friesen, N., German, D. A., Franzke, A. & Neuffer, B. ‘Missing link’ species Capsella orientalis and Capsella thracicaelucidate evolution of model plant genus Capsella (Brassicaceae). Mol. Ecol. 21, 1223–1238 (2012).
Google Scholar
Seregin, A. P., Anačkov, G. & Friesen, N. Molecular and morphological revision of the Allium saxatile group (Amaryllidaceae): Geographical isolation as the driving force of underestimated speciation. Bot. J. Linn. Soc. 178, 67–101 (2015).
Google Scholar
Friesen, N. et al. Dated phylogenies and historical biogeography of Dontostemon and Clausia (Brassicaceae) mirror the palaeogeographical history of the Eurasian steppe. J. Biogeogr. 43, 738–749 (2015).
Google Scholar
Friesen, N. et al. Allium species of section Rhizomatosa, early members of the Central Asian steppe vegetation. Flora 263, 151536 (2020).
Google Scholar
Friesen, N. et al. Evolutionary history of the Eurasian steppe plant Schivereckia podolica (Brassicaceae) and its close relatives. Flora 268, 151602 (2020).
Google Scholar
Volkova, P. A., Herden, T. & Friesen, N. Genetic variation in Goniolimon speciosum (Plumbaginaceae) reveals a complex history of steppe vegetation. Bot. J. Linn. Soc. 184, 113–121 (2017).
Žerdoner Čalasan, A., Seregin, A. P., Hurka, H., Hofford, N. P. & Neuffer, B. The Eurasian steppe belt in time and space: Phylogeny and historical biogeography of the false flax (Camelina Crantz, Camelineae, Brassicaceae). Flora 260, 151477 (2019).
Google Scholar
Kirschner, P. et al. Long-term isolation of European steppe outposts boosts the biome’s conservation value. Nat. Commun. 11, 1968 (2020).
Google Scholar
Heklau, H. & von Wehrden, H. Wood anatomy reflects the distribution of Krascheninnikovia ceratoides (Chenopodiaceae). Flora Morphol. Distrib. Funct. Ecol. Plants 206, 300–309 (2011).
Google Scholar
Heklau, H. & Röser, M. Delineation, taxonomy and phylogenetic relationships of the genus Krascheninnikovia (Amaranthaceae subtribe Axyridinae). Taxon 57, 563–576 (2008).
Takhtajan, A. Floristic Regions of the World (University of California Press, 1986).
Manafzadeh, S., Staedler, Y. M. & Conti, E. Visions of the past and dreams of the future in the Orient: The Irano-Turanian region from classical botany to evolutionary studies. Biol. Rev. Camb. Philos. Soc. 92, 1365–1388 (2017).
Google Scholar
Walter, H. & Breckle, S.-W. Ecological systems of the geobiosphere. 2 Tropical and subtropical zonobiomes (Springer, 1986). https://doi.org/10.1007/978-3-662-06812-0.
Hartmann, H. Zur Flora und Vegetation der Halbwüsten, Steppen und Rasengesellschaften im südöstlichen Ladakh (Indien). in Jahrbuch des Vereins zum Schutz der Bergwelt 129–188 (1997).
Kraudzun, T., Vanselow, K. A. & Samimi, C. Realities and myths of the Teresken syndrome—An evaluation of the exploitation of dwarf shrub resources in the Eastern Pamirs of Tajikistan. J. Environ. Manag. 132, 49–59 (2014).
Google Scholar
Vanselow, K. & Samimi, C. Predictive mapping of dwarf shrub vegetation in an arid high mountain ecosystem using remote sensing and random forests. Remote Sens. 6, 6709–6726 (2014).
Google Scholar
Smoliak, S. & Bezeau, L. M. Chemical composition and in vitro digestibility of range forage plants of the Stipa-Bouteloua prairie. Can. J. Plant Sci. 47, 161–167 (1967).
Google Scholar
Waldron, B. L., Eun, J.-S., ZoBell, D. R. & Olson, K. C. Forage kochia (Kochia prostrata) for fall and winter grazing. Small Rumin. Res. 91, 47–55 (2010).
Google Scholar
Steshenko, A. P. Formation of the semi-shrub structure in the high mountains of Pamir. Trans Akad Nauk Tadzhik SSR 50, 2 (1956).
Zalenski, O. V. & Steshenko, A. P. On the special features of the main species of the vegetation of the Pamir mountains. Proc. Bot. Soc. 7, 9–12 (1957).
Barnes, M. The Effect of Plant Source Location on Restoration Success: A Reciprocal Transplant Experiment with Winterfat (Krascheninnikovia lanata) (University of New Mexico, 2009).
Seidl, A. et al. Phylogeny and biogeography of the Pleistocene Holarctic steppe and semi-desert goosefoot plant Krascheninnikovia ceratoides. Flora 262, 151504 (2020).
Google Scholar
Yang, J. Y., Fu, X. Q., Yan, G. X. & Zhang, S. Z. Analysis of three species of the genus Ceratoides. Grassl. China 1, 67–71 (1996).
Rubtsov, M., Sagimbaev, R., Shakhanov, E., Tiran, T. & Balyan, G. Natural polyploids of prostrate summer cypress and winterfat as initial material for breeding. Sov. Agric. Sci. 4, 20–24 (1989).
Yan, G., Zhang, S., Yan, J., Fu, X. & Wang, L. Chromosome numbers and geographical distribution of 68 species of forage plants. Grassl. China 4, 53–60 (1989).
Kurban, N. Karyotype analysis of three species of Ceratoides (Chenopodiaceae). J. Syst. Evol. 22, 466–468 (1984).
Zakharjeva, O. I. & Soskov, Y. D. Chromosome numbers in desert herbage plants. Bulleten VNII Rastenievod. Im. N.I. Vavilova 108, 57–60 (1981).
Domínguez, F. et al. Krascheninnikovia ceratoides (L.) Gueldenst (Chenopodiaceae) en Aragón (España): Algunos resultados para su conservación. Bol. R. Soc. Esp. Hist. Nat. (Sec. Biol.) 96, 15–26 (2001).
Zakirova, R. Chromosome numbers of some Alliaceae, Salicaceae, Polygonaceae, and Chenopodiaceae of the South Balkhash territory. Citologija 41, 1064 (1999).
Dobes, C. H., Hahn, B. & Morawetz, W. Chromosomenzahlen zur Gefässpflanzenflora Österreichs. Linzer Biol. Beitr 29, 5–43 (1997).
Sainz Ollero, H., Múgica, F. & Arias Torcal, J. Estrategias para la conservación de la flora amenazada de Aragón (Consejo de Protección de la Naturaleza de Aragón, 1996).
Lomonosova, M. N. & Krasnikov, A. A. Chromosome numbers in some members of the Chenopodiaceae. Bot. Zurn. (Moscow Leningrad) 78, 158–159 (1993).
Castroviejo, S. & Soriano, C. Krascheninnikovia ceratoides Gueldenst (Publicaciones del CSIC, 1990).
Takhtajan, A. Numeri chromosomatum magnoliophytorum florae URSS. Aceraceae–Menyanthaceae. (Academis Scientiarum Rossica, Institutum Botanicum nomine VL Komarovii;” Nauka”, 1990).
Ghaffari, S. M., Balaei, Z., Chatrenoor, T. & Akhani, H. Cytology of SW Asian Chenopodiaceae: New data from Iran and a review of previous records and correlations with life forms and C4 photosynthesis. Plant Syst. Evol. 301, 501–521 (2014).
Google Scholar
eFloras. Published on the Internet http://www.efloras.org. (2008).
Kadereit, G., Mavrodiev, E. V., Zacharias, E. H. & Sukhorukov, A. P. Molecular phylogeny of Atripliceae (Chenopodioideae, Chenopodiaceae): Implications for systematics, biogeography, flower and fruit evolution, and the origin of C4 photosynthesis. Am. J. Bot. 97, 1664–1687 (2010).
Google Scholar
Di Vincenzo, V. et al. Evolutionary diversification of the African achyranthoid clade (Amaranthaceae) in the context of sterile flower evolution and epizoochory. Ann. Bot. 122, 69–85 (2018).
Google Scholar
Janis, C. M. Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annu. Rev. Ecol. Syst. 24, 467–500 (1993).
Google Scholar
Doležel, J. & Greilhuber, J. Nuclear genome size: Are we getting closer?. Cytom. Part A 77, 635–642 (2010).
Google Scholar
Yokoya, K., Roberts, A. V., Mottley, J., Lewis, R. & Brandham, P. E. Nuclear DNA amounts in roses. Ann. Bot. 85, 557–561 (2000).
Google Scholar
Poland, J. A., Brown, P. J., Sorrells, M. E. & Jannink, J.-L. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7, e32253 (2012).
Google Scholar
Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).
Google Scholar
Weiß, C. L., Pais, M., Cano, L. M., Kamoun, S. & Burbano, H. A. nQuire: A statistical framework for ploidy estimation using next generation sequencing. BMC Bioinform. 19, 122 (2018).
Google Scholar
Corrêa, A., dos Santos, R., Goldman, G. H. & Riaño-Pachón, D. M. ploidyNGS: Visually exploring ploidy with next generation sequencing data. Bioinformatics 33, 2575–2576 (2017).
Google Scholar
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
Google Scholar
Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2013).
Frichot, E. & François, O. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).
Google Scholar
Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).
Google Scholar
Gruber, B., Unmack, P. J., Berry, O. F. & Georges, A. dartr: An R package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol. Ecol. Resour. 18, 691–699 (2018).
Google Scholar
Bradley, M. raxml_ascbias. GitHub https://github.com/btmartin721/raxml_ascbias (2018).
Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
Google Scholar
Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
Google Scholar
Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).
Google Scholar
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
Google Scholar
Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).
Google Scholar
Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2005).
Google Scholar
Rambaut, A. FigTree v1.3.1. (2010).
Kalinowski, S. T. hp-rare 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes 5, 187–189 (2005).
Google Scholar
Brummitt, R. World geographical scheme for recording plant distributions. (2001).
Britton, T., Anderson, C. L., Jacquet, D., Lundqvist, S. & Bremer, K. Estimating divergence times in large phylogenetic trees. Syst. Biol. 56, 741–752 (2007).
Google Scholar
Matzke, N. J. BioGeoBEARS: BioGeography with Bayesian (and likelihood) evolutionary analysis with R scripts. Version 1.1. 1, published on GitHub on 6 November 2018. (2018).
Matzke, N. J. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst. Biol. 63, 951–970 (2014).
Google Scholar
Matzke, N. J. Probabilistic historical biogeography: New models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 2 (2013).
Google Scholar
Ronquist, F. Dispersal-vicariance analysis: A new approach to the quantification of historical biogeography. Syst. Biol. 46, 195–203 (1997).
Google Scholar
Strömberg, C. A. E. Evolution of grasses and grassland ecosystems. Annu. Rev. Earth Planet. Sci. 39, 517–544 (2011).
Google Scholar
Linder, H. P., Lehmann, C. E. R., Archibald, S., Osborne, C. P. & Richardson, D. M. Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. Biol. Rev. 93, 1125–1144 (2017).
Google Scholar
Devyatkin, E. V. Meridional distribution of Pleistocene ecosystems in Asia: Basic problems. Stratigr. Geol. Correl. 1, 77–83 (1993).
Arkhipov, S. A. & Volkova, V. S. Geological history of Pleistocene landscapes and climate in West Siberia. (1994).
Akhmetyev, M. A. et al. Chapter 8: Kazakhstan and Central Asia (plains and foothills). In Cenozoic Climatic and Environmental Changes in Russia (Geological Society of America, 2005). https://doi.org/10.1130/0-8137-2382-5.139.
Arkhipov, S. A. et al. Chapter 4: West Siberia. In Cenozoic Climatic and Environmental Changes in Russia (Geological Society of America, 2005). https://doi.org/10.1130/0-8137-2382-5.67.
Li, Q. Q. et al. Phylogeny and biogeography of Allium (Amaryllidaceae: Allieae) based on nuclear ribosomal internal transcribed spacer and chloroplast rps16 sequences, focusing on the inclusion of species endemic to China. Ann. Bot. 106, 709–733 (2010).
Google Scholar
Hais, M., Komprdová, K., Ermakov, N. & Chytrý, M. Modelling the last glacial maximum environments for a refugium of Pleistocene biota in the Russian Altai mountains Siberia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 438, 135–145 (2015).
Google Scholar
Fedeneva, I. N. & Dergacheva, M. I. Paleosols as the basis of environmental reconstruction in Altai mountainous areas. Quat. Int. 106–107, 89–101 (2003).
Google Scholar
Braun-Blanquet, J. & Bolòs i Capdevila, O. de. Les groupements végétaux du bassin moyen de l’Ebre et leur dynamisme. An. la Estac. Exp. Aula Dei 5, 1–266 (1957).
Tutin, T., Webb, D., Heywood, V., Walters, S. & Moore, D. Flora Europaea (Cambridge University Press, 1993).
Heklau, H. Proposal to conserve the name Krascheninnikovia against Ceratoides (Chenopodiaceae. Taxon 55, 1044–1045 (2006).
Google Scholar
Davis, P. H. Flora of Turkey and the east Aegean islands (Edinburgh University Press, 1988).
Welsh, S., Atwood, N., Higgins, L. & Goodrich, S. A Utah Flora. Gt. Basin Nat. 9, 123 (1987).
Täckholm, V. Students’ Flora of Egypt (Cairo University Publishing, 1974).
Komarov, V. Flora of the U.R.S.S (Academiae Sciencitarum U.R.S.S, 1964).
Rechinger, K. Flora Iranica (Akademische Druck- und Verlagsanstalt, 1963).
Crawford, K. M. & Whitney, K. D. Population genetic diversity influences colonization success. Mol. Ecol. 19, 1253–1263 (2010).
Google Scholar
Hilbig, W. Vegetation of Mongolia (SPB Academic Pubishing, 1995).
Briggs, J. C. Chapter 7 Neogene. In Global Biogeography Vol. 14 (ed. Briggs, J. C.) 147–189 (Elsevier, Amsterdam, 1995).
Yurtsev, B. A. The Pleistocene ‘Tundra-steppe’ and the productivity paradox: The landscape approach. Quat. Sci. Rev. 20, 165–174 (2001).
Google Scholar
Stewart, J. R., Lister, A. M., Barnes, I. & Dalén, L. Refugia revisited: Individualistic responses of species in space and time. Proc. Biol. Sci. 277, 661–671 (2010).
Google Scholar
Varga, Z. Extra-Mediterranean refugia, post-glacial vegetation history and area dynamics in eastern Central Europe. Relict Species https://doi.org/10.1007/978-3-540-92160-8_3 (2009).
Google Scholar
Willis, K. J. & Vanandel, T. Trees or no trees? The environments of central and eastern Europe during the Last Glaciation. Quat. Sci. Rev. 23, 2369–2387 (2004).
Google Scholar
Tremetsberger, K. et al. Pleistocene refugia and polytopic replacement of diploids by tetraploids in the Patagonian and Subantarctic plant Hypochaeris incana (Asteraceae, Cichorieae). Mol. Ecol. 18, 3668–3682 (2009).
Google Scholar
Source: Ecology - nature.com