in

The phylogeographic history of Krascheninnikovia reflects the development of dry steppes and semi-deserts in Eurasia

  • 1.

    Hurka, H. et al. The Eurasian steppe belt: Status quo, origin and evolutionary history. Turczaninowia 22, 5–71 (2019).

    Google Scholar 

  • 2.

    Walter, H. Die Vegetation Osteuropas (Gustav Fischer Verlag, 1974).

    Google Scholar 

  • 3.

    Walter, H. Die Vegetation der Erde in öko-physiologischer Betrachtung , Band II : Die gemäßigten und arktischen Zonen, in ökologischer Betrachtung (Gustav Fischer Verlag, 1968).

    Google Scholar 

  • 4.

    Cohen, K. M. & Gibbard, P. L. Global chronostratigraphical correlation table for the last 2.7 million years, version 2019 QI-500. Quat. Int. 500, 20–31 (2019).

    Article 

    Google Scholar 

  • 5.

    Frenzel, B. Grundzüge der Pleistozänen Vegetationsgeschichte Nord-Euroasiens. Geogr. J. 136, 291 (1968).

    Google Scholar 

  • 6.

    Tarasov, P. E. et al. Last glacial maximum biomes reconstructed from pollen and plant macrofossil data from northern Eurasia. J. Biogeogr. 27, 609–620 (2000).

    Article 

    Google Scholar 

  • 7.

    Caves Rugenstein, J., Sjostrom, D., Mix, H., Winnick, M. & Chamberlain, C. Aridification of Central Asia and uplift of the Altai and Hangay Mountains, Mongolia: Stable isotope evidence. Am. J. Sci. 314, 1171–1201 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 8.

    Yanina, T., Sorokin, V., Bezrodnykh, Y. & Romanyuk, B. Late Pleistocene climatic events reflected in the Caspian Sea geological history (based on drilling data). Quat. Int. 465, 130–141 (2018).

    Article 

    Google Scholar 

  • 9.

    Dolukhanov, P. M., Chepalyga, A. L., Shkatova, V. K. & Lavrentiev, N. V. Late Quaternary Caspian: Sea-levels, environments and human settlement. Open Geogr. J. 2, 1–15 (2009).

    Article 

    Google Scholar 

  • 10.

    Tudryn, A. et al. Late Quaternary Caspian Sea environment: Late Khazarian and Early Khvalynian transgressions from the lower reaches of the Volga River. Quat. Int. 292, 193–204 (2013).

    Article 

    Google Scholar 

  • 11.

    Dengler, J., Janišová, M., Török, P. & Wellstein, C. Biodiversity of Palaearctic grasslands: A synthesis. Agric. Ecosyst. Environ. 182, 1–14 (2014).

    Article 

    Google Scholar 

  • 12.

    Hejcman, M., Hejcmanová, P., Pavlů, V. & Beneš, J. Origin and history of grasslands in Central Europe—a review. Grass Forage Sci. 68, 345–363 (2013).

    Article 

    Google Scholar 

  • 13.

    Franzke, A. et al. Molecular signals for Late Tertiary/Early Quaternary range splits of an Eurasian steppe plant: Clausia aprica (Brassicaceae). Mol. Ecol. 13, 2789–2795 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Hurka, H., Friesen, N., German, D. A., Franzke, A. & Neuffer, B. ‘Missing link’ species Capsella orientalis and Capsella thracicaelucidate evolution of model plant genus Capsella (Brassicaceae). Mol. Ecol. 21, 1223–1238 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 15.

    Seregin, A. P., Anačkov, G. & Friesen, N. Molecular and morphological revision of the Allium saxatile group (Amaryllidaceae): Geographical isolation as the driving force of underestimated speciation. Bot. J. Linn. Soc. 178, 67–101 (2015).

    Article 

    Google Scholar 

  • 16.

    Friesen, N. et al. Dated phylogenies and historical biogeography of Dontostemon and Clausia (Brassicaceae) mirror the palaeogeographical history of the Eurasian steppe. J. Biogeogr. 43, 738–749 (2015).

    Article 

    Google Scholar 

  • 17.

    Friesen, N. et al. Allium species of section Rhizomatosa, early members of the Central Asian steppe vegetation. Flora 263, 151536 (2020).

    Article 

    Google Scholar 

  • 18.

    Friesen, N. et al. Evolutionary history of the Eurasian steppe plant Schivereckia podolica (Brassicaceae) and its close relatives. Flora 268, 151602 (2020).

    Article 

    Google Scholar 

  • 19.

    Volkova, P. A., Herden, T. & Friesen, N. Genetic variation in Goniolimon speciosum (Plumbaginaceae) reveals a complex history of steppe vegetation. Bot. J. Linn. Soc. 184, 113–121 (2017).

    Google Scholar 

  • 20.

    Žerdoner Čalasan, A., Seregin, A. P., Hurka, H., Hofford, N. P. & Neuffer, B. The Eurasian steppe belt in time and space: Phylogeny and historical biogeography of the false flax (Camelina Crantz, Camelineae, Brassicaceae). Flora 260, 151477 (2019).

    Article 

    Google Scholar 

  • 21.

    Kirschner, P. et al. Long-term isolation of European steppe outposts boosts the biome’s conservation value. Nat. Commun. 11, 1968 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Heklau, H. & von Wehrden, H. Wood anatomy reflects the distribution of Krascheninnikovia ceratoides (Chenopodiaceae). Flora Morphol. Distrib. Funct. Ecol. Plants 206, 300–309 (2011).

    Article 

    Google Scholar 

  • 23.

    Heklau, H. & Röser, M. Delineation, taxonomy and phylogenetic relationships of the genus Krascheninnikovia (Amaranthaceae subtribe Axyridinae). Taxon 57, 563–576 (2008).

    Google Scholar 

  • 24.

    Takhtajan, A. Floristic Regions of the World (University of California Press, 1986).

    Google Scholar 

  • 25.

    Manafzadeh, S., Staedler, Y. M. & Conti, E. Visions of the past and dreams of the future in the Orient: The Irano-Turanian region from classical botany to evolutionary studies. Biol. Rev. Camb. Philos. Soc. 92, 1365–1388 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 26.

    Walter, H. & Breckle, S.-W. Ecological systems of the geobiosphere. 2 Tropical and subtropical zonobiomes (Springer, 1986). https://doi.org/10.1007/978-3-662-06812-0.

    Google Scholar 

  • 27.

    Hartmann, H. Zur Flora und Vegetation der Halbwüsten, Steppen und Rasengesellschaften im südöstlichen Ladakh (Indien). in Jahrbuch des Vereins zum Schutz der Bergwelt 129–188 (1997).

  • 28.

    Kraudzun, T., Vanselow, K. A. & Samimi, C. Realities and myths of the Teresken syndrome—An evaluation of the exploitation of dwarf shrub resources in the Eastern Pamirs of Tajikistan. J. Environ. Manag. 132, 49–59 (2014).

    Article 

    Google Scholar 

  • 29.

    Vanselow, K. & Samimi, C. Predictive mapping of dwarf shrub vegetation in an arid high mountain ecosystem using remote sensing and random forests. Remote Sens. 6, 6709–6726 (2014).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Smoliak, S. & Bezeau, L. M. Chemical composition and in vitro digestibility of range forage plants of the Stipa-Bouteloua prairie. Can. J. Plant Sci. 47, 161–167 (1967).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Waldron, B. L., Eun, J.-S., ZoBell, D. R. & Olson, K. C. Forage kochia (Kochia prostrata) for fall and winter grazing. Small Rumin. Res. 91, 47–55 (2010).

    Article 

    Google Scholar 

  • 32.

    Steshenko, A. P. Formation of the semi-shrub structure in the high mountains of Pamir. Trans Akad Nauk Tadzhik SSR 50, 2 (1956).

    Google Scholar 

  • 33.

    Zalenski, O. V. & Steshenko, A. P. On the special features of the main species of the vegetation of the Pamir mountains. Proc. Bot. Soc. 7, 9–12 (1957).

    Google Scholar 

  • 34.

    Barnes, M. The Effect of Plant Source Location on Restoration Success: A Reciprocal Transplant Experiment with Winterfat (Krascheninnikovia lanata) (University of New Mexico, 2009).

    Google Scholar 

  • 35.

    Seidl, A. et al. Phylogeny and biogeography of the Pleistocene Holarctic steppe and semi-desert goosefoot plant Krascheninnikovia ceratoides. Flora 262, 151504 (2020).

    Article 

    Google Scholar 

  • 36.

    Yang, J. Y., Fu, X. Q., Yan, G. X. & Zhang, S. Z. Analysis of three species of the genus Ceratoides. Grassl. China 1, 67–71 (1996).

    Google Scholar 

  • 37.

    Rubtsov, M., Sagimbaev, R., Shakhanov, E., Tiran, T. & Balyan, G. Natural polyploids of prostrate summer cypress and winterfat as initial material for breeding. Sov. Agric. Sci. 4, 20–24 (1989).

    Google Scholar 

  • 38.

    Yan, G., Zhang, S., Yan, J., Fu, X. & Wang, L. Chromosome numbers and geographical distribution of 68 species of forage plants. Grassl. China 4, 53–60 (1989).

    Google Scholar 

  • 39.

    Kurban, N. Karyotype analysis of three species of Ceratoides (Chenopodiaceae). J. Syst. Evol. 22, 466–468 (1984).

    Google Scholar 

  • 40.

    Zakharjeva, O. I. & Soskov, Y. D. Chromosome numbers in desert herbage plants. Bulleten VNII Rastenievod. Im. N.I. Vavilova 108, 57–60 (1981).

    Google Scholar 

  • 41.

    Domínguez, F. et al. Krascheninnikovia ceratoides (L.) Gueldenst (Chenopodiaceae) en Aragón (España): Algunos resultados para su conservación. Bol. R. Soc. Esp. Hist. Nat. (Sec. Biol.) 96, 15–26 (2001).

    Google Scholar 

  • 42.

    Zakirova, R. Chromosome numbers of some Alliaceae, Salicaceae, Polygonaceae, and Chenopodiaceae of the South Balkhash territory. Citologija 41, 1064 (1999).

    Google Scholar 

  • 43.

    Dobes, C. H., Hahn, B. & Morawetz, W. Chromosomenzahlen zur Gefässpflanzenflora Österreichs. Linzer Biol. Beitr 29, 5–43 (1997).

    Google Scholar 

  • 44.

    Sainz Ollero, H., Múgica, F. & Arias Torcal, J. Estrategias para la conservación de la flora amenazada de Aragón (Consejo de Protección de la Naturaleza de Aragón, 1996).

    Google Scholar 

  • 45.

    Lomonosova, M. N. & Krasnikov, A. A. Chromosome numbers in some members of the Chenopodiaceae. Bot. Zurn. (Moscow Leningrad) 78, 158–159 (1993).

    Google Scholar 

  • 46.

    Castroviejo, S. & Soriano, C. Krascheninnikovia ceratoides Gueldenst (Publicaciones del CSIC, 1990).

    Google Scholar 

  • 47.

    Takhtajan, A. Numeri chromosomatum magnoliophytorum florae URSS. Aceraceae–Menyanthaceae. (Academis Scientiarum Rossica, Institutum Botanicum nomine VL Komarovii;” Nauka”, 1990).

  • 48.

    Ghaffari, S. M., Balaei, Z., Chatrenoor, T. & Akhani, H. Cytology of SW Asian Chenopodiaceae: New data from Iran and a review of previous records and correlations with life forms and C4 photosynthesis. Plant Syst. Evol. 301, 501–521 (2014).

    Article 

    Google Scholar 

  • 49.

    eFloras. Published on the Internet http://www.efloras.org. (2008).

  • 50.

    Kadereit, G., Mavrodiev, E. V., Zacharias, E. H. & Sukhorukov, A. P. Molecular phylogeny of Atripliceae (Chenopodioideae, Chenopodiaceae): Implications for systematics, biogeography, flower and fruit evolution, and the origin of C4 photosynthesis. Am. J. Bot. 97, 1664–1687 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 51.

    Di Vincenzo, V. et al. Evolutionary diversification of the African achyranthoid clade (Amaranthaceae) in the context of sterile flower evolution and epizoochory. Ann. Bot. 122, 69–85 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Janis, C. M. Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annu. Rev. Ecol. Syst. 24, 467–500 (1993).

    Article 

    Google Scholar 

  • 53.

    Doležel, J. & Greilhuber, J. Nuclear genome size: Are we getting closer?. Cytom. Part A 77, 635–642 (2010).

    Article 
    CAS 

    Google Scholar 

  • 54.

    Yokoya, K., Roberts, A. V., Mottley, J., Lewis, R. & Brandham, P. E. Nuclear DNA amounts in roses. Ann. Bot. 85, 557–561 (2000).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Poland, J. A., Brown, P. J., Sorrells, M. E. & Jannink, J.-L. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7, e32253 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Weiß, C. L., Pais, M., Cano, L. M., Kamoun, S. & Burbano, H. A. nQuire: A statistical framework for ploidy estimation using next generation sequencing. BMC Bioinform. 19, 122 (2018).

    Article 
    CAS 

    Google Scholar 

  • 58.

    Corrêa, A., dos Santos, R., Goldman, G. H. & Riaño-Pachón, D. M. ploidyNGS: Visually exploring ploidy with next generation sequencing data. Bioinformatics 33, 2575–2576 (2017).

    Article 
    CAS 

    Google Scholar 

  • 59.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2013).

  • 62.

    Frichot, E. & François, O. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).

    Article 

    Google Scholar 

  • 63.

    Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 64.

    Gruber, B., Unmack, P. J., Berry, O. F. & Georges, A. dartr: An R package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol. Ecol. Resour. 18, 691–699 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 65.

    Bradley, M. raxml_ascbias. GitHub https://github.com/btmartin721/raxml_ascbias (2018).

  • 66.

    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 69.

    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 70.

    Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2005).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 72.

    Rambaut, A. FigTree v1.3.1. (2010).

  • 73.

    Kalinowski, S. T. hp-rare 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes 5, 187–189 (2005).

    CAS 
    Article 

    Google Scholar 

  • 74.

    Brummitt, R. World geographical scheme for recording plant distributions. (2001).

  • 75.

    Britton, T., Anderson, C. L., Jacquet, D., Lundqvist, S. & Bremer, K. Estimating divergence times in large phylogenetic trees. Syst. Biol. 56, 741–752 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 76.

    Matzke, N. J. BioGeoBEARS: BioGeography with Bayesian (and likelihood) evolutionary analysis with R scripts. Version 1.1. 1, published on GitHub on 6 November 2018. (2018).

  • 77.

    Matzke, N. J. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst. Biol. 63, 951–970 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 78.

    Matzke, N. J. Probabilistic historical biogeography: New models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 2 (2013).

    Article 

    Google Scholar 

  • 79.

    Ronquist, F. Dispersal-vicariance analysis: A new approach to the quantification of historical biogeography. Syst. Biol. 46, 195–203 (1997).

    Article 

    Google Scholar 

  • 80.

    Strömberg, C. A. E. Evolution of grasses and grassland ecosystems. Annu. Rev. Earth Planet. Sci. 39, 517–544 (2011).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 81.

    Linder, H. P., Lehmann, C. E. R., Archibald, S., Osborne, C. P. & Richardson, D. M. Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. Biol. Rev. 93, 1125–1144 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 82.

    Devyatkin, E. V. Meridional distribution of Pleistocene ecosystems in Asia: Basic problems. Stratigr. Geol. Correl. 1, 77–83 (1993).

    Google Scholar 

  • 83.

    Arkhipov, S. A. & Volkova, V. S. Geological history of Pleistocene landscapes and climate in West Siberia. (1994).

  • 84.

    Akhmetyev, M. A. et al. Chapter 8: Kazakhstan and Central Asia (plains and foothills). In Cenozoic Climatic and Environmental Changes in Russia (Geological Society of America, 2005). https://doi.org/10.1130/0-8137-2382-5.139.

    Google Scholar 

  • 85.

    Arkhipov, S. A. et al. Chapter 4: West Siberia. In Cenozoic Climatic and Environmental Changes in Russia (Geological Society of America, 2005). https://doi.org/10.1130/0-8137-2382-5.67.

    Google Scholar 

  • 86.

    Li, Q. Q. et al. Phylogeny and biogeography of Allium (Amaryllidaceae: Allieae) based on nuclear ribosomal internal transcribed spacer and chloroplast rps16 sequences, focusing on the inclusion of species endemic to China. Ann. Bot. 106, 709–733 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 87.

    Hais, M., Komprdová, K., Ermakov, N. & Chytrý, M. Modelling the last glacial maximum environments for a refugium of Pleistocene biota in the Russian Altai mountains Siberia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 438, 135–145 (2015).

    Article 

    Google Scholar 

  • 88.

    Fedeneva, I. N. & Dergacheva, M. I. Paleosols as the basis of environmental reconstruction in Altai mountainous areas. Quat. Int. 106–107, 89–101 (2003).

    Article 

    Google Scholar 

  • 89.

    Braun-Blanquet, J. & Bolòs i Capdevila, O. de. Les groupements végétaux du bassin moyen de l’Ebre et leur dynamisme. An. la Estac. Exp. Aula Dei 5, 1–266 (1957).

    Google Scholar 

  • 90.

    Tutin, T., Webb, D., Heywood, V., Walters, S. & Moore, D. Flora Europaea (Cambridge University Press, 1993).

    Google Scholar 

  • 91.

    Heklau, H. Proposal to conserve the name Krascheninnikovia against Ceratoides (Chenopodiaceae. Taxon 55, 1044–1045 (2006).

    Article 

    Google Scholar 

  • 92.

    Davis, P. H. Flora of Turkey and the east Aegean islands (Edinburgh University Press, 1988).

    Google Scholar 

  • 93.

    Welsh, S., Atwood, N., Higgins, L. & Goodrich, S. A Utah Flora. Gt. Basin Nat. 9, 123 (1987).

    Google Scholar 

  • 94.

    Täckholm, V. Students’ Flora of Egypt (Cairo University Publishing, 1974).

    Google Scholar 

  • 95.

    Komarov, V. Flora of the U.R.S.S (Academiae Sciencitarum U.R.S.S, 1964).

    Google Scholar 

  • 96.

    Rechinger, K. Flora Iranica (Akademische Druck- und Verlagsanstalt, 1963).

    Google Scholar 

  • 97.

    Crawford, K. M. & Whitney, K. D. Population genetic diversity influences colonization success. Mol. Ecol. 19, 1253–1263 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 98.

    Hilbig, W. Vegetation of Mongolia (SPB Academic Pubishing, 1995).

    Google Scholar 

  • 99.

    Briggs, J. C. Chapter 7 Neogene. In Global Biogeography Vol. 14 (ed. Briggs, J. C.) 147–189 (Elsevier, Amsterdam, 1995).

    Google Scholar 

  • 100.

    Yurtsev, B. A. The Pleistocene ‘Tundra-steppe’ and the productivity paradox: The landscape approach. Quat. Sci. Rev. 20, 165–174 (2001).

    ADS 
    Article 

    Google Scholar 

  • 101.

    Stewart, J. R., Lister, A. M., Barnes, I. & Dalén, L. Refugia revisited: Individualistic responses of species in space and time. Proc. Biol. Sci. 277, 661–671 (2010).

    PubMed 

    Google Scholar 

  • 102.

    Varga, Z. Extra-Mediterranean refugia, post-glacial vegetation history and area dynamics in eastern Central Europe. Relict Species https://doi.org/10.1007/978-3-540-92160-8_3 (2009).

    Article 

    Google Scholar 

  • 103.

    Willis, K. J. & Vanandel, T. Trees or no trees? The environments of central and eastern Europe during the Last Glaciation. Quat. Sci. Rev. 23, 2369–2387 (2004).

    ADS 
    Article 

    Google Scholar 

  • 104.

    Tremetsberger, K. et al. Pleistocene refugia and polytopic replacement of diploids by tetraploids in the Patagonian and Subantarctic plant Hypochaeris incana (Asteraceae, Cichorieae). Mol. Ecol. 18, 3668–3682 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Candidatus Eremiobacterota, a metabolically and phylogenetically diverse terrestrial phylum with acid-tolerant adaptations

    Study reveals plunge in lithium-ion battery costs