in

The population sizes and global extinction risk of reef-building coral species at biogeographic scales

  • 1.

    Wilkinson, C. Status of Coral Reefs of the World: 2008 (Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre, 2008).

  • 2.

    Jackson, J. B. C., Donovan, M. K., Cramer, K. L. & Lam, V. V. Status and Trends of Caribbean Coral Reefs: 1970–2012 (Global Coral Reef Monitoring Network, 2014).

  • 3.

    Eakin, C. M. et al. Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS ONE 5, e13969 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 4.

    Baker, A. C., Glynn, P. W. & Riegl, B. Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar. Coast. Shelf Sci. 80, 435–471 (2008).

    Article  Google Scholar 

  • 5.

    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 6.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    De’ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl Acad. Sci. USA 109, 17995–17999 (2012).

    PubMed  Article  Google Scholar 

  • 8.

    Gardner, T. A. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 9.

    Carpenter, K. E. et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321, 560–563 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 10.

    ter Steege, H. et al. Estimating the global conservation status of more than 15,000 Amazonian tree species. Sci. Adv. 1, e1500936 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Fauset, S. et al. Hyperdominance in Amazonian forest carbon cycling. Nat. Commun. 6, 6857 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 13.

    Connell, J., Hughes, T. & Wallace, C. A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol. Monogr. 67, 461–488 (1997).

    Article  Google Scholar 

  • 14.

    Hughes, T. P. & Jackson, J. B. C. Population dynamics and life histories of foliaceous corals. Ecol. Monogr. 55, 141–166 (1985).

    Article  Google Scholar 

  • 15.

    ter Steege, H. et al. Hyperdominance in the Amazonian tree flora. Science 342, 1243092 (2013).

    PubMed  Article  CAS  Google Scholar 

  • 16.

    Gaston, K. J. & Blackburn, T. M. How many birds are there? Biodivers. Conserv. 6, 615–625 (1997).

    Article  Google Scholar 

  • 17.

    Kerry, J. T. & Bellwood, D. R. Do tabular corals constitute keystone structures for fishes on coral reefs? Coral Reefs 34, 41–50 (2015).

    Article  Google Scholar 

  • 18.

    Connolly, S. R., Hughes, T. P., Bellwood, D. R. & Karlson, R. H. Community structure of corals and reef fishes at multiple scales. Science 309, 1363–1365 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Connolly, S. R., Hughes, T. P. & Bellwood, D. R. A unified model explains commonness and rarity on coral reefs. Ecol. Lett. 20, 477–486 (2017).

    PubMed  Article  Google Scholar 

  • 20.

    Hubbell, S. P. Estimating the global number of tropical tree species, and Fisher’s paradox. Proc. Natl Acad. Sci. USA 112, 7343–7344 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 21.

    Hughes, T. P., Bellwood, D. R. & Connolly, S. R. Biodiversity hotspots, centres of endemicity, and the conservation of coral reefs. Ecol. Lett. 5, 775–784 (2002).

    Article  Google Scholar 

  • 22.

    Hughes, T. P., Bellwood, D. R., Connolly, S. R. & Cornell, H. V. Double jeopardy and global extinction risk in corals and reef fishes. Curr. Biol. 24, 2946–2951 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 23.

    Kinlan, B. P. & Gaines, S. D. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84, 2007–2020 (2003).

    Article  Google Scholar 

  • 24.

    Hull, P. M., Darroch, S. A. F. & Erwin, D. H. Rarity in mass extinctions and the future of ecosystems. Nature 528, 345–351 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 25.

    Cardoso, P., Borges, P. A. V., Triantis, K. A., Ferrández, M. A. & Martín, J. L. Adapting the IUCN Red List criteria for invertebrates. Biol. Conserv. 144, 2432–2440 (2011).

    Article  Google Scholar 

  • 26.

    Cardoso, P., Borges, P. A. V., Triantis, K. A., Ferrández, M. A. & Martín, J. L. The underrepresentation and misrepresentation of invertebrates in the IUCN Red List. Biol. Conserv. 149, 147–148 (2012).

    Article  Google Scholar 

  • 27.

    Estes, J. A., Duggins, D. O. & Rathbun, G. B. The ecology of extinctions in kelp forest communities. Conserv. Biol. 3, 252–264 (1989).

    Article  Google Scholar 

  • 28.

    Oliver, J. & Babcock, R. Aspects of the fertilization ecology of broadcast spawning corals: sperm dilution effects and in situ measurements of fertilization. Biol. Bull. 183, 409–417 (1992).

    CAS  PubMed  Article  Google Scholar 

  • 29.

    Knowlton, N., Lang, J. C. & Keller, B. D. Case study of natural population collapse: post-hurricane predation on Jamaican staghorn corals. Smithson. Contrib. Mar. Sci. 31, 1–25 (1990).

    Google Scholar 

  • 30.

    Gaston, K. J. & Fuller, R. A. Commonness, population depletion and conservation biology. Trends Ecol. Evol. 23, 14–19 (2008).

    PubMed  Article  Google Scholar 

  • 31.

    Säterberg, T., Sellman, S. & Ebenman, B. High frequency of functional extinctions in ecological networks. Nature 499, 468–470 (2013).

    PubMed  Article  CAS  Google Scholar 

  • 32.

    Pratchett, M. S. Dietary overlap among coral-feeding butterflyfishes (Chaetodontidae) at Lizard Island, northern Great Barrier Reef. Mar. Biol. 148, 373–382 (2005).

    Article  Google Scholar 

  • 33.

    Huang, D., Licuanan, W. Y., Baird, A. H. & Fukami, H. Cleaning up the ‘Bigmessidae’: molecular phylogeny of scleractinian corals from Faviidae, Merulinidae, Pectiniidae and Trachyphylliidae. BMC Evol. Biol. 11, 37 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Knowlton, N. & Jackson, J. B. C. New taxonomy and niche partitioning on coral reefs: jack of all trades or master of some? Trends Ecol. Evol. 9, 7–9 (1994).

    CAS  PubMed  Article  Google Scholar 

  • 35.

    Gilpin, M. E. & Soulé, M. E. in Conservation Biology: The Science of Scarcity and Diversity (ed, Soulé, M. E.) 19–34 (Sinauer Associates, 1986).

  • 36.

    Bak, R. P. M. & Meesters, E. H. Population structure as a response of coral communities to global change. Am. Zool. 39, 56–65 (1999).

    Article  Google Scholar 

  • 37.

    McClanahan, T. R., Ateweberhan, M. & Omukoto, J. Long-term changes in coral colony size distributions on Kenyan reefs under different management regimes and across the 1998 bleaching event. Mar. Biol. 153, 755–768 (2008).

    Article  Google Scholar 

  • 38.

    Riegl, B. M., Bruckner, A. W., Rowlands, G. P., Purkis, S. J. & Renaud, P. Red Sea coral reef trajectories over 2 decades suggest increasing community homogenization and decline in coral size. PLoS ONE 7, e38396 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).

    CAS  Article  Google Scholar 

  • 40.

    Global Distribution of Coral Reefs (UNEP-WCMC, WorldFish Centre, WRI & TNC, 2018); https://data.unep-wcmc.org/datasets/

  • 41.

    Bruno, J. F. & Valdivia, A. Coral reef degradation is not correlated with local human population density. Sci. Rep. 6, 29778 (2016).

  • 42.

    Bruno, J. Data from: Coral reef degradation is not correlated with local human population density. Dryad Digital Repository https://doi.org/10.5061/dryad.48r68 (2016).

  • 43.

    Karlson, R. H., Cornell, H. V. & Hughes, T. P. Coral communities are regionally enriched along an oceanic biodiversity gradient. Nature 429, 867–870 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Cornell, H. V., Karlson, R. H. & Hughes, T. P. Scale-dependent variation in coral community similarity across sites, islands, and island groups. Ecology 88, 1707–1715 (2007).

    PubMed  Article  Google Scholar 

  • 45.

    Cornell, H. V., Karlson, R. H. & Hughes, T. P. Local-regional species richness relationships are linear at very small to large scales in west-central Pacific corals. Coral Reefs 27, 145–151 (2008).

    Article  Google Scholar 

  • 46.

    Connolly, S. R., Dornelas, M., Bellwood, D. R. & Hughes, T. P. Testing species abundance models: a new bootstrap approach applied to Indo-Pacific coral reefs. Ecology 90, 3138–3149 (2009).

    PubMed  Article  Google Scholar 

  • 47.

    Reef Habitat Maps (NOAA-NCCOS, accessed 10 November 2017); https://products.coastalscience.noaa.gov/collections/benthic/default.aspx

  • 48.

    Purkis, S. J. et al. High-resolution habitat and bathymetry maps for 65,000 sq. km of Earth’s remotest coral reefs. Coral Reefs 38, 467–488 (2019).

    Article  Google Scholar 

  • 49.

    Roelfsema, C., Phinn, S., Jupiter, S., Comley, J. & Albert, S. Mapping coral reefs at reef to reef-system scales, 10s–1000s km2, using object-based image analysis. Int. J. Remote Sens. 34, 6367–6388 (2013).

    Article  Google Scholar 

  • 50.

    Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Article  Google Scholar 

  • 51.

    Warton, D. I. & Hui, F. K. C. The arcsine is asinine: the analysis of proportions in ecology. Ecology 92, 3–10 (2011).

    PubMed  Article  Google Scholar 

  • 52.

    Marsh, L. M., Bradbury, R. H. & Reichelt, R. E. Determination of the physical parameters of coral distributions using line transect data. Coral Reefs 2, 175–180 (1984).

    Google Scholar 

  • 53.

    Hughes, T. P. Population dynamics based on individual size rather than age: a general model with a reef coral example. Am. Nat. 123, 778–795 (1984).

    Article  Google Scholar 

  • 54.

    Hall, V. R. & Hughes, T. P. Reproductive strategies of modular organisms: comparative studies of reef-building corals. Ecology 77, 950–963 (1996).

    Article  Google Scholar 

  • 55.

    Hughes, T. P., Connolly, S. R. & Keith, S. A. Geographic ranges of reef corals (Cnidaria: Anthozoa: Scleractinia) in the Indo-Pacific. Ecology 94, 1659 (2013).

    Article  Google Scholar 

  • 56.

    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 57.

    van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).

    PubMed  Article  CAS  Google Scholar 

  • 58.

    Hubbell, S. P. et al. How many tree species are there in the Amazon and how many of them will go extinct? Proc. Natl Acad. Sci. USA 105, 11498–11504 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 59.

    Atkinson, A., Siegel, V., Pakhomov, E. A., Jessopp, M. J. & Loeb, V. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep-Sea Res. I 56, 727–740 (2009).

    Article  Google Scholar 

  • 60.

    Current World Population (Worldometer, accessed 13 May 2020); https://www.worldometers.info/world-population/

  • 61.

    California Condor Recovery Program: 2017 Annual Population Status (US Fish and Wildlife Service, 2017).

  • 62.

    Goodrich, J. M. et al. Panthera tigris. The IUCN Red List of Threatened Species 2015 Report number e.T15955A50659951 (IUCN, 2015).


  • Source: Ecology - nature.com

    DNA traces the origin of honey by identifying plants, bacteria and fungi

    SMART develops analytical tools to enable next-generation agriculture