in

The size and shape of parasitic larvae of naiads (Unionidae) are not dependent on female size

  • 1.

    MacArthur, R. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, 1967).

    Google Scholar 

  • 2.

    Stearns, S. C. The evolution of life history traits: A critique of the theory and a review of the data. Annu. Rev. Ecol. Evol. Syst. 8, 145–171. https://doi.org/10.1146/annurev.es.08.110177.001045 (1977).

    Article 

    Google Scholar 

  • 3.

    Lopes-Lima, M. et al. Conservation status of freshwater mussels in Europe: State of the art and future challenges. Biol. Rev. 92, 572–607. https://doi.org/10.1111/brv.12244 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 4.

    Lopes-Lima, M. et al. Conservation of freshwater bivalves at the global scale: Diversity, threats and research needs. Hydrobiologia 810, 1–14. https://doi.org/10.1007/s10750-017-3486-7 (2018).

    Article 

    Google Scholar 

  • 5.

    Ferreira-Rodríguez, N. et al. Research priorities for freshwater mussel conservation assessment. Biol. Conserv. 231, 77–87. https://doi.org/10.1016/j.biocon.2019.01.002 (2019).

    Article 

    Google Scholar 

  • 6.

    Haag, W. R. & Rypel, A. L. Growth and longevity in freshwater mussels: Evolutionary and conservation implications. Biol. Rev. 86, 225–247. https://doi.org/10.1111/j.1469-185X.2010.00146.x (2011).

    Article 
    PubMed 

    Google Scholar 

  • 7.

    Haag, W. R. North American Freshwater Mussels: Natural History, Ecology, and Conservation (Cambridge University Press, 2012).

    Book 

    Google Scholar 

  • 8.

    Ziuganov, V. et al. Life span variation of the freshwater pearl shell: A model species for testing longevity mechanisms in animals. AMBIO J. Hum. Environ. 29, 102–105. https://doi.org/10.1579/0044-7447-29.2.102 (2000).

    Article 

    Google Scholar 

  • 9.

    Wächtler, K., Drehen-Mansur, M. C., & Richter, T. Larval types and early postlarval biology in Naiads (Unionoida). In Ecology and Evolution of the Freshwater Mussels Unionoida (eds. Bauer, G. & Wächtler, K.) 93–119 (Springer Science & Business Media, 2001).

  • 10.

    Hanson, J. M., Mackay, W. C. & Prepas, E. E. Effect of size-selective predation by muskrats (Ondatra zebithicus) on a population of unionid clams (Anodonta grandis simpsoniana). J. Anim. Ecol. 58, 15–28. https://doi.org/10.2307/4983 (1989).

    Article 

    Google Scholar 

  • 11.

    Bauer, G. The adaptive value of offspring size among freshwater mussels (Bivalvia; Unionoidea). J. Anim. Ecol. 63, 933–944. https://doi.org/10.2307/5270 (1994).

    Article 

    Google Scholar 

  • 12.

    Bauer, G. Framework and driving forces for the evolution of Naiad life histories. In Ecology and Evolution of the Freshwater Mussels Unionoida (eds. Bauer, G. & Wächtler, K.) 233–257 (Springer Science & Business Media, 2001).

  • 13.

    Haag, W. R. The role of fecundity and reproductive effort in defining life-history strategies of North American freshwater mussels. Biol. Rev. 88, 745–766. https://doi.org/10.1111/brv.12028 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 14.

    Wood, E. M. Development and morphology of the glochidium larva of Anodonta cygnea (Mollusca: Bivalvia). J. Zool. 173, 1–13. https://doi.org/10.1111/j.1469-7998.1974.tb01743.x (1974).

    Article 

    Google Scholar 

  • 15.

    Silverman, H., Steffens, W. L. & Dietz, T. Calcium from extracellular concretions in the gills of freshwater unionid mussels is mobilized during reproduction. J. Exp. Zool. 236, 137–147. https://doi.org/10.1002/jez.1402360204 (1985).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Silverman, H., Kays, W. T. & Dietz, T. H. Maternal calcium contribution to glochidial shells in freshwater mussels (Eulamellibranchia: Unionidae). J. Exp. Zool. 242, 137–146. https://doi.org/10.1002/jez.1402420204 (1987).

    CAS 
    Article 

    Google Scholar 

  • 17.

    McIvor, A. L. & Aldridge, D. C. The reproductive biology of the depressed river mussel Pseudanodonta complanata (Bivalvia: Unionidae) with implications for its conservation. J. Molluscan Stud. 73, 259–266. https://doi.org/10.1093/mollus/eym023 (2007).

    Article 

    Google Scholar 

  • 18.

    Neves, R. J., Bogan, A. E., WIlliams, J. D., Ahlstedt, S. A., & Hartfield, P. W. Status of aquatic mollusks in the southeastern United States: A downward spiral of diversity. In Aquatic Fauna in Peril: A Southeastern Perspective (eds. Benz, W. & Collins, D. E.) 43–85 (Southeast Aquatic Research Institute, 1997).

  • 19.

    Kat, P. W. Parasitism and the Unionacea (Bivalvia). Biol. Rev. 59, 189–207. https://doi.org/10.1111/j.1469-185X.1984.tb00407.x (1984).

    Article 

    Google Scholar 

  • 20.

    Ćmiel, A. M., Zając, K., Lipińska, A. M. & Zając, T. Glochidial infestation of fish by the endangered thick-shelled river mussel Unio crassus. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 535–544. https://doi.org/10.1002/aqc.2883 (2018).

    Article 

    Google Scholar 

  • 21.

    Modesto, V. et al. Fish and mussels: Importance of fish for freshwater mussel conservation. Fish Fish. 19, 244–259. https://doi.org/10.1111/faf.12252 (2018).

    Article 

    Google Scholar 

  • 22.

    Jansen, W. A. & Hanson, M. J. Estimates of the number of glochidia produced by clams (Anodonta grandis simpsoniana Lea) attaching to yellow perch (Perca flavescens) and surviving to various ages in Narrow Lake, Alberta. Can. J. Zool. 69, 973–977. https://doi.org/10.1139/z91-141 (1991).

    Article 

    Google Scholar 

  • 23.

    Young, M. & Williams, J. The reproductive biology of the freshwater pearl mussel Margaritifera margaritifera (Linn.) in Scotland. II Laboratory studies. Arch. Hydrobiol. 100, 29–43 (1984).

    Google Scholar 

  • 24.

    Zimmerman, L. & Neves, R. J. Effects of temperature on duration of viability for glochidia of freshwater mussels (Bivalvia: Unionidae). Am. Malacol. Bull. 17, 31–35 (2002).

    Google Scholar 

  • 25.

    Haag, W. R. & Warren, M. L. Host fishes and infection strategies of freshwater mussels in large Mobile Basin streams, USA. J. N. Am. Benthol. Soc. 22, 78. https://doi.org/10.2307/1467979 (2003).

    Article 

    Google Scholar 

  • 26.

    Ćmiel, A. M., Zając, T., Zając, K., Lipińska, A. & Najberek, K. Single or multiple spawning? Comparison of breeding strategies of freshwater Unionidae mussels under stochastic environmental conditions. Hydrobiologia 848, 3067–3075. https://doi.org/10.1007/s10750-019-04045-8 (2021).

    Article 

    Google Scholar 

  • 27.

    Lillie, F. R. The embryology of the unionidae. A study in cell-lineage. J. Morphol. 10, 1–100. https://doi.org/10.1002/jmor.1050100102 (1895).

    Article 

    Google Scholar 

  • 28.

    Lopes-Lima, M. et al. The strange case of the tetragenous Anodonta anatina. J. Exp. Zool. 325, 52–56. https://doi.org/10.1002/jez.1995 (2016).

    Article 

    Google Scholar 

  • 29.

    Barnhart, M. C., Haag, W. R. & Roston, W. N. Adaptations to host infection and larval parasitism in Unionoida. J. N. Am. Benthol. Soc. 27, 370–394. https://doi.org/10.1899/07-093.1 (2008).

    Article 

    Google Scholar 

  • 30.

    Zając, K. & Zając, T. A. Seasonal patterns in the developmental rate of glochidia in the endangered thick-shelled river mussel. Unio crassus Philipsson. 1788. Hydrobiologia 848, 3077–3091. https://doi.org/10.1007/s10750-020-04240-y (2021).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Jones, J. W., Mair, R. A. & Neves, R. J. Factors affecting survival and growth of juvenile freshwater mussels (Bivalvia: Unionidae) cultured in recirculating aquaculture systems. N. Am. J. Aquac. 67, 210–220. https://doi.org/10.1577/A04-055.1 (2005).

    Article 

    Google Scholar 

  • 32.

    Iwata, H. & Ukai, Y. SHAPE: A computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. J. Hered. 93, 384–385. https://doi.org/10.1093/jhered/93.5.384 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 33.

    Freeman, H. Computer processing of line drawing images. ACM Comput. Surv. 6, 57–97. https://doi.org/10.1145/356625.356627 (1974).

    Article 
    MATH 

    Google Scholar 

  • 34.

    Kuhl, F. P. & Giardina, C. R. Elliptic Fourier features of a closed contour. Comput. Gr. Image Process. 18, 236–258. https://doi.org/10.1016/0146-664X(82)90034-X (1982).

    Article 

    Google Scholar 

  • 35.

    Aldridge, D. C. & Horne, D. C. Fossil glochidia (Bivalvia. Unionidae): Identification and value in palaeoenvironmental reconstructions. J. Micropalaeontol. 17, 179–182. https://doi.org/10.1144/jm.17.2.179 (1998).

    Article 

    Google Scholar 

  • 36.

    Antonova, L. A. & Starobogatov, Y. I. Generic differences of glochidia of naiades (Bivalvia Unionoidea) of the fauna of USSR and problems of the evolution of glochidia. Systematics and Fauna of Gastropoda. Bivalvia and Cephalopoda. Proc. Zool. Inst. Leningr. 187, 129–154 (1988) (in Russian).

    Google Scholar 

  • 37.

    Niemeyer, B. Vergleichende Untersuchungen zur bionomischen Strategie der Teichmuschelarten Anodonta cygnea L. und Anodonta anatina L. PhD thesis, Institut für Zoologie der Tierärztlichen Hochschule (1992) (in German).

  • 38.

    Harms, W. Postembryonale Entwicklungsgeschichte der Unioniden. Zool. Jb. 28, 325–386 (1909) (in German).

    Google Scholar 

  • 39.

    Hüby, B. Zur Entwicklungsbiologie der Fließgewässermuschel Pseudanodonta complanata. PhD thesis, Institut für Zoologie der Tierärztlichen Hochschule (1988) (in German).

  • 40.

    Nagel, K. O. Anatomische, morphologische und biochemische Untersuchungen zur Taxonomie und systematik der europäischer Unionacea (Mollusca: Bivalvia). PhD Dissertation, Universitat des Landes Hessen (1988) (in German).

  • 41.

    Nagel, K. O. Anatomische und morphologische Merkmale europäischer Najaden (Unionoidea: Margaritiferidae und Unionidae) und ihre Bedeutung für die Systematik. Heldia 2, 3–48 (1999) (in German).

    Google Scholar 

  • 42.

    Pekkarinen, M. & Englund, V. P. M. Sizes of intramarsupial unionacean glochidia in Finland. Arch. Hydrobiol. 134, 379–391. https://doi.org/10.1127/archiv-hydrobiol/134/1995/379 (1995).

    Article 

    Google Scholar 

  • 43.

    Escobar-Calderón, J. F. & Douda, K. Variable performance of metamorphosis success indicators in an in vitro culture of freshwater mussel glochidia. Aquaculture 513, 734404. https://doi.org/10.1016/j.aquaculture.2019.734404 (2019).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Huber, V. M. M. Host Fish Suitability for the Endangered Native Anodonta and Impacts of the Invasive Sinanodonta Woodiana on Their Reproductive Success. PhD Thesis, Technische Universität München (2019).

  • 45.

    Scharsack, G. Licht-und Elektronenmikroskopische Untersuchungen an Larvalstadien einheimischer Unionacea (Bivalvia; Eulamellibranchiata). PhD Thesis, University of Hannover (1994) (in German).

  • 46.

    Hoggarth, M. A. Descriptions of some of the glochidia of the Unionidae (Mollusca: Bivalvia). Malacologia 41, 1–118 (1999).

    Google Scholar 

  • 47.

    Başçınar, N. S. & Düzgüneş, E. A preliminary study on reproduction and larval development of Swan Mussel [Anodonta cygnea (Linnaeus, 1758)] (Bivalvia: Unionidae) in Lake Çıldır (Kars, Turkey). Turk. J. Fish. Aquat. Sci. 9, 23–27 (2009).

    Google Scholar 

  • 48.

    Sayenko, E. M. The microsculpture of glochidia of some Anodontine bivalves (Unionidae). Biol. Bull. 43, 127–135. https://doi.org/10.1134/S1062359016020072 (2016).

    Article 

    Google Scholar 

  • 49.

    Claes, M. Untersuchungen zur Entwicklungsbiologie der Teichmuschel Anodonta cygnea. PhD Thesis, Institut für Zoologie, Tierärztliche Hochschule Hannover (1987) (in German).

  • 50.

    Maaß, S. Untersuchungen zur Fortpflanzungsbiologie einheimischer Süßwassermuscheln der Gattung Unio. PhD Dissertation, Institut für Zoologie, Tierärztliche Hochschule Hannover (1987) (in German).

  • 51.

    Heino, M. & Kaitala, V. Evolution of resource allocation between growth and reproduction in animals with indeterminate growth. J. Evol. Biol. 12, 423–429. https://doi.org/10.1046/j.1420-9101.1999.00044.x (1999).

    Article 

    Google Scholar 

  • 52.

    Flatt, T. The evolutionary genetics of canalization. Q. Rev. Biol. 80, 287–316. https://doi.org/10.1086/432265 (2005).

    Article 
    PubMed 

    Google Scholar 

  • 53.

    Hastie, L. C. & Young, M. R. Timing of spawning and glochidial release in Scottish freshwater pearl mussel (Margaritifera margaritifera) populations. Freshw. Biol. 48, 2107–2117. https://doi.org/10.1046/j.1365-2427.2003.01153.x (2003).

    Article 

    Google Scholar 

  • 54.

    Glazier, D. S. Smaller amphipod mothers show stronger trade-offs between offspring size and number. Ecol. Lett. 3, 142–149. https://doi.org/10.1046/j.1461-0248.2000.00132.x (2001).

    Article 

    Google Scholar 

  • 55.

    Reznick, D. Hard and soft selection revisited: How evolution by natural selection works in the real world. J. Hered. 107, 3–14. https://doi.org/10.1093/jhered/esv076 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 56.

    Haldane, J. B. S. The effect of variation on fitness. Am. Nat. 71, 337–349 (1937).

    Article 

    Google Scholar 

  • 57.

    Aldridge, D. C. The morphology, growth and reproduction of Unionidae (Bivalvia) in a fenland waterway. J. Molluscan Stud. 65, 47–60. https://doi.org/10.1093/mollus/65.1.47 (1999).

    Article 

    Google Scholar 

  • 58.

    Chernyshev, A. V., Sayenko, E. M. & Bogatov, V. V. Superspecific taxonomy of the far eastern unionids (Bivalvia. Unionidae): Review and analysis. Biol. Bull. 47, 267–275. https://doi.org/10.1134/S1062359020010045 (2020).

    Article 

    Google Scholar 

  • 59.

    Pfeiffer, J. M. III. & Graf, D. L. Evolution of bilaterally asymmetrical larvae in freshwater mussels (Bivalvia: Unionoida: Unionidae). Zool. J. Linnean Soc. 175, 307–318. https://doi.org/10.1111/zoj.12282 (2015).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    A constraint on historic growth in global photosynthesis due to increasing CO2

    A tool to speed development of new solar cells