in

The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization

  • 1.

    Bradford MA, Wieder WR, Bonan GB, Fierer N, Raymond PA, Crowther TW. Managing uncertainty in soil carbon feedbacks to climate change. Nat Clim Chang. 2016;6:751–8.

    Article 
    CAS 

    Google Scholar 

  • 2.

    Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Crowther TW, Hoogen JVD, Wan J, Mayes MA, Keiser AD, Mo L, et al. The global soil community and its influence on biogeochemistry. Science. 2019;365:eaav0550.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Heimann M, Reichstein M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature. 2008;451:289–92.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Wieder WR, Bonan GB, Allison SD. Global soil carbon projections are improved by modelling microbial processes. Nat Clim Chang. 2013;3:909–12.

    CAS 
    Article 

    Google Scholar 

  • 6.

    Walker TWN, Kaiser C, Strasser F, Herbold CW, Leblans NIW, Woebken D, et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat Clim Chang. 2018;8:885–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB, et al. Quantifying global soil carbon losses in response to warming. Nature. 2016;540:104–8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Li JQ, Pei JM, Pendall E, Fang CM, Nie M. Spatial heterogeneity of temperature sensitivity of soil respiration: a global analysis of field observations. Soil Biol Biochem. 2020;141:107675.

    CAS 
    Article 

    Google Scholar 

  • 9.

    Wang QK, Zhao XC, Chen LC, Yang QP, Chen S, Zhang WD, et al. Global synthesis of temperature sensitivity of soil organic carbon decomposition: latitudinal patterns and mechanisms. Funct Ecol. 2019;33:514–23.

    Article 

    Google Scholar 

  • 10.

    Nottingham AT, Baath E, Reischke S, Salinas N, Meir P. Adaptation of soil microbial growth to temperature: using a tropical elevation gradient to predict future changes. Glob Chang Biol. 2019;25:827–38.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Ye JS, Bradford MA, Dacal M, Maestre FT, García-Palacios P. Increasing microbial carbon use efficiency with warming predicts soil heterotrophic respiration globally. Glob Chang Biol. 2019;25:3354–64.

    PubMed 
    Article 

    Google Scholar 

  • 12.

    Smith TP, Thomas TJH, Garcia-Carreras B, Sal S, Yvon-Durocher G, Bell T, et al. Community-level respiration of prokaryotic microbes may rise with global warming. Nat Commun. 2019;10:5124.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 13.

    Schipper LA, Hobbs JK, Rutledge S, Arcus VL. Thermodynamic theory explains the temperature optima of soil microbial processes and high Q10 values at low temperatures. Glob Chang Biol 2014;20:3578–86.

    PubMed 
    Article 

    Google Scholar 

  • 14.

    Pietikainen J, Pettersson M, Baath E. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiol Ecol. 2005;52:49–58.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 15.

    Bárcenas-Moreno G, Gómez-Brandón M, Rousk J, Bååth E. Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment. Glob Chang Biol. 2009;15:2950–7.

    Article 

    Google Scholar 

  • 16.

    Engqvist MKM. Correlating enzyme annotations with a large set of microbial growth temperatures reveals metabolic adaptations to growth at diverse temperatures. BMC Microbiol. 2018;18:177.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Oliverio AM, Bradford MA, Fierer N. Identifying the microbial taxa that consistently respond to soil warming across time and space. Glob Chang Biol. 2017;23:2117–29.

    PubMed 
    Article 

    Google Scholar 

  • 18.

    Bier RL, Bernhardt ES, Boot CM, Graham EB, Hall EK, Lennon JT, et al. Linking microbial community structure and microbial processes: an empirical and conceptual overview. FEMS Microbiol Ecol. 2015;91:fiv113.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 19.

    Dubey A, Malla MA, Khan F, Chowdhary K, Yadav S, Kumar A, et al. Soil microbiome: a key player for conservation of soil health under changing climate. Biodivers Conserv. 2019;28:2405–29.

    Article 

    Google Scholar 

  • 20.

    Hungate BA, Mau RL, Schwartz E, Caporaso JG, Dijkstra P, van Gestel N, et al. Quantitative microbial ecology through stable isotope probing. Appl Environ Microbiol. 2015;81:7570–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Koch BJ, McHugh TA, Hayer M, Schwartz E, Blazewicz SJ, Dijkstra P, et al. Estimating taxon-specific population dynamics in diverse microbial communities. Ecosphere. 2018;9:e02090.

    Article 

    Google Scholar 

  • 22.

    Hamdi S, Moyano F, Sall S, Bernoux M, Chevallier T. Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions. Soil Biol Biochem. 2013;58:115–26.

    CAS 
    Article 

    Google Scholar 

  • 23.

    Martiny AC, Treseder K, Pusch G. Phylogenetic conservatism of functional traits in microorganisms. ISME J. 2013;7:830–8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    DeAngelis KM, Pold G, Topçuoğlu BD, van Diepen LTA, Varney RM, Blanchard JL, et al. Long-term forest soil warming alters microbial communities in temperate forest soils. Front Microbiol. 2015;6:104.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Euskirchen ES, Bret-Harte MS, Shaver GR, Edgar CW, Romanovsky VE. Long-term release of carbon dioxide from Arctic Tundra ecosystems in Alaska. Ecosystems. 2017;20:960–74.

    CAS 
    Article 

    Google Scholar 

  • 26.

    Reed SC, Reibold R, Cavaleri MA, Alonso-Rodríguez AM, Berberich ME, Wood TE. Chapter six—soil biogeochemical responses of a tropical forest to warming and hurricane disturbance. In: Dumbrell AJ, Turner EC, Fayle TM, editors. Advances in ecological research. (Academic Press, Cambridge MA, 2020) pp 225–52.

  • 27.

    Witt C, Gaunt JL, Galicia CC, Ottow JCG, Neue HU. A rapid chloroform-fumigation extraction method for measuring soil microbial biomass carbon and nitrogen in flooded rice soils. Biol Fertil Soils. 2000;30:510–9.

    CAS 
    Article 

    Google Scholar 

  • 28.

    Berry D, Ben Mahfoudh K, Wagner M, Loy A. Barcoded primers used in multiplex amplicon pyrosequencing bias amplification. Appl Environ Microbiol. 2012;78:612.

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 29.

    Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Micro Ecol. 2015;75:129–37.

    Article 

    Google Scholar 

  • 30.

    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Rohland N, Reich D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 2012;22:939–46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Aronesty E. ea-utils: “Command-line tools for processing biological sequencing data”. 2011. https://github.com/ExpressionAnalysis/ea-utils.

  • 33.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Caporaso JG, Bittinger K, Bushman FD, Desantis TZ, Andersen GL, Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics. 2010;26:266–7.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10:57–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Morrissey EM, Mau RL, Schwartz E, McHugh TA, Dijkstra P, Koch BJ, et al. Bacterial carbon use plasticity, phylogenetic diversity and the priming of soil organic matter. ISME J. 2017;11:1890–9.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Li J, Mau RL, Dijkstra P, Koch BJ, Schwartz E, Liu X-JA, et al. Predictive genomic traits for bacterial growth in culture versus actual growth in soil. ISME J. 2019;13:2162–72.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Gross N, Bagousse-Pinguet YL, Liancourt P, Berdugo M, Gotelli NJ, Maestre FT. Functional trait diversity maximizes ecosystem multifunctionality. Nat Ecol Evol. 2017;1:0132.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Laliberté E, Norton DA, Scott D. Contrasting effects of productivity and disturbance on plant functional diversity at local and metacommunity scales. J Veg Sci. 2013;24:834–42.

    Article 

    Google Scholar 

  • 42.

    Plass-Johnson JG, Taylor MH, Husain AAA, Teichberg MC, Ferse SCA. Non-random variability in functional composition of coral reef fish communities along an environmental gradient. PLOS ONE. 2016;11:e0154014.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 43.

    Götzenberger L, Botta-Dukát Z, Lepš J, Pärtel M, Zobel M, de Bello F. Which randomizations detect convergence and divergence in trait-based community assembly? A test of commonly used null models. J Veg Sci. 2016;27:1275–87.

    Article 

    Google Scholar 

  • 44.

    Delgado-Baquerizo M, Trivedi P, Trivedi C, Eldridge DJ, Reich PB, Jeffries TC, et al. Microbial richness and composition independently drive soil multifunctionality. Funct Ecol. 2017;31:2330–43.

    Article 

    Google Scholar 

  • 45.

    R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2020. https://www.R-project.org/.

  • 46.

    Bruelheide H, Dengler J, Purschke O, Lenoir J, Jiménez-Alfaro B, Hennekens SM, et al. Global trait–environment relationships of plant communities. Nat Ecol Evol. 2018;2:1906–17.

    PubMed 
    Article 

    Google Scholar 

  • 47.

    Piton G, Legay N, Arnoldi C, Lavorel S, Clément J-C, Foulquier A. Using proxies of microbial community-weighted means traits to explain the cascading effect of management intensity, soil and plant traits on ecosystem resilience in mountain grasslands. J Ecol. 2020;108:876–93.

    CAS 
    Article 

    Google Scholar 

  • 48.

    Alster CJ, von Fischer JC, Allison SD, Treseder KK. Embracing a new paradigm for temperature sensitivity of soil microbes. Glob Chang Biol. 2020;26:3221–9.

    PubMed 
    Article 

    Google Scholar 

  • 49.

    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Li J, Nie M, Pendall E, Reich PB, Pei J, Noh NJ, et al. Biogeographic variation in temperature sensitivity of decomposition in forest soils. Glob Chang Biol. 2020;26:1873–85.

    PubMed 
    Article 

    Google Scholar 

  • 51.

    Lipson DA. The complex relationship between microbial growth rate and yield and its implications for ecosystem processes. Front Microbiol. 2015;6:615.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Buckeridge KM, Mason KE, McNamara NP, Ostle N, Puissant J, Goodall T, et al. Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization. Commun Earth Environ. 2020;1:36.

    Article 

    Google Scholar 

  • 53.

    Ali A, Yan E-R, Chang SX, Cheng J-Y, Liu X-Y. Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests. Sci Total Environ. 2017;574:654–62.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    Buzzard V, Michaletz ST, Deng Y, He Z, Ning D, Shen L, et al. Continental scale structuring of forest and soil diversity via functional traits. Nat Ecol Evol. 2019;3:1298–308.

    PubMed 
    Article 

    Google Scholar 

  • 55.

    Luo Y-H, Cadotte MW, Burgess KS, Liu J, Tan S-L, Zou J-Y, et al. Greater than the sum of the parts: how the species composition in different forest strata influence ecosystem function. Ecol Lett. 2019;22:1449–61.

    PubMed 
    Article 

    Google Scholar 

  • 56.

    Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson TM. Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA. 2007;104:20684–9.

    PubMed 
    Article 

    Google Scholar 

  • 57.

    Bradford MA. Thermal adaptation of decomposer communities in warming soils. Front Microbiol. 2013;4:333.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Morrissey EM, Mau RL, Schwartz E, Koch BJ, Hayer M, Hungate BA. Taxonomic patterns in the nitrogen assimilation of soil prokaryotes. Environ Microbiol. 2018;20:1112–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 59.

    Coskun OK, Ozen V, Wankel SD, Orsi WD. Quantifying population-specific growth in benthic bacterial communities under low oxygen using H218O. ISME J. 2019;13:1546–59.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Zhou G, Zhou X, Liu R, Du Z, Zhou L, Li S, et al. Soil fungi and fine root biomass mediate drought-induced reductions in soil respiration. Funct Ecol. 2020;34:2634–43.

    Article 

    Google Scholar 

  • 61.

    Melillo JM, Frey SD, Deangelis KM, Werner WJ, Bernard MJ, Bowles FP, et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science. 2017;358:101–5.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 62.

    Johnston ASA, Sibly RM. The influence of soil communities on the temperature sensitivity of soil respiration. Nat Ecol Evol. 2018;2:1597–602.

    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Cooling homes without warming the planet

    Powering the energy transition with better storage