in

Vivid biofluorescence discovered in the nocturnal Springhare (Pedetidae)

  • 1.

    Zhao, H. et al. The evolution of color vision in nocturnal mammals. PNAS 106, 8980–8985 (2009).

    ADS  CAS  Article  Google Scholar 

  • 2.

    Douglas, R. H. & Jeffery, G. The spectral transmission of ocular media suggests ultraviolet sensitivity is widespread among mammals. Proc. R. Soc. B. 281, 1471–2954. https://doi.org/10.1098/rspb.2013.2995 (2014).

    Article  Google Scholar 

  • 3.

    Pearn, S. M., Bennett, A. T. & Cuthill, I. C. Ultraviolet vision, fluorescence and mate choice in a parrot, the budgerigar Melopsittacus undulates. Proc. R. Soc. B. 268, 2273–2279. https://doi.org/10.1098/rspb.2001.1813 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 4.

    Olofsson, M., Vallin, A., Jakobsson, S. & Wiklund, C. Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths. PLoS ONE 5, e10798. https://doi.org/10.1371/journal.pone.0010798 (2010).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 5.

    Honkavaara, J., Koivula, M., Korpimaki, E., Siitari, H. & Viitala, J. Ultraviolet vision and foraging in terrestrial vertebrates. Oikos 98, 505–511. https://doi.org/10.1034/j.1600-0706.2002.980315.x (2008).

    Article  Google Scholar 

  • 6.

    McDonald, B., Geiger, B. & Vrla, S. Ultraviolet vision in Ord’s kangaroo rat (Dipodomys ordii). J. Mammal. https://doi.org/10.1093/jmammal/gyaa083 (2020).

    Article  Google Scholar 

  • 7.

    Hunt, D. M., Carvalho, L. S., Cowing, J. A. & Davies, W. L. Evolution and spectral tuning of visual pigments in birds and mammals. Phil. Trans. R. Soc. B. 364, 2941–2955. https://doi.org/10.1098/rstb.2009.0044 (2009).

    CAS  Article  PubMed  Google Scholar 

  • 8.

    Davies, W. L. et al. Visual pigments of the platypus: a novel route to mammalian colour vision. Curr. Biol. 17, R161–R163. https://doi.org/10.1016/j.cub.2007.01.037 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 9.

    Jeng, M.-L. Biofluorescence in terrestrial animals, with emphasis on fireflies: A review and field observation. In Bioluminescence – analytical applications and basic biology (ed. Suzuki, H.) Ch. 6, https://doi.org/10.5772/intechopen.86029 (IntechOpen, 2019).

  • 10.

    Sparks, J. S. et al. The covert world of fish biofluorescence: A phylogenetically widespread and phenotypically variable phenomenon. PLoS ONE https://doi.org/10.1371/journal.pone.0083259 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 11.

    Park, H. B. et al. Bright green biofluorescence in sharks derives from Bromo-kynurenine metabolism. iScience 19, 1277–1286. https://doi.org/10.1016/j.isci.2019.07.019 (2019).

    CAS  Article  Google Scholar 

  • 12.

    Gruber, D. F. & Sparks, J. S. First observation of fluorescence in marine turtles. Am. Mus. Novit. 3845, 1–8. https://doi.org/10.1206/3845.1 (2015).

    Article  Google Scholar 

  • 13.

    Taboada, C. et al. Naturally occurring fluorescence in frogs. PNAS 114, 3672–3677. https://doi.org/10.1073/pnas.1701053114 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 14.

    Prötzel, D. et al. Widespread bone-based fluorescence in chameleons. Sci. Rep. 8, 698. https://doi.org/10.1038/s41598-017-19070-7 (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 15.

    Goutte, S. et al. Intense bone fluorescence reveals hidden patterns in pumpkin toadlets. Sci. Rep. 9, 5388. https://doi.org/10.1038/s41598-019-41959-8 (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 16.

    Lamb, J. Y. & Davis, M. P. Salamanders and other amphibians are aglow with biofluorescence. Sci. Rep. 10, 2821. https://doi.org/10.1038/s41598-020-58528-9 (2020).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 17.

    Weidensaul, C. S., Colvin, B. A., Brinker, D. F. & Huy, J. S. Use of ultraviolet light as an aid in age classification of owls. Wilson J Ornithol. 123, 373–377. https://doi.org/10.1676/09-125.1 (2011).

    Article  Google Scholar 

  • 18.

    Camacho, C., Negro, J. J., Redondo, I., Palacios, S. & Sáez-Gómez, P. Correlates of individual variation in the porphyrin-based fluorescence of red-necked nightjars. Sci. Rep. 9, 19115. https://doi.org/10.1038/s41598-019-55522-y (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 19.

    Kohler, A. M., Olson, E. R., Martin, J. G. & Anich, P. S. Ultraviolet fluorescence discovered in New World flying squirrels (Glaucomys). J. Mammal. 100, 21–30. https://doi.org/10.1093/jmammal/gyy177 (2019).

    Article  Google Scholar 

  • 20.

    Meisner, D. H. Psychedelic opossums: fluorescence of the skin and fur of Didelphis virginiana Kerr. Ohio J. Sci. 83, 4 (1983).

    Google Scholar 

  • 21.

    Pine, R. H., Rice, J. E., Bucher, J. E., Tank, D. J. Jr. & Greenhall, A. M. Labile pigments and fluorescent pelage in Didelphid marsupials. Mammalia 49, 249–256 (1985).

    Article  Google Scholar 

  • 22.

    Anich, P. S. et al. Biofluorescence in the platypus (Orinthorhynchus anatinus). Mammalia https://doi.org/10.1515/mammalia-2020-0027 (2020).

    Article  Google Scholar 

  • 23.

    Matthee, C. A. & Robinson, T. J. Mitochondrial DNA phylogeography and comparative cytogenetics of the springhare, Pedetes capensis (Mammalia: Reodentia). J. Mammal. Evol. 4, 53–73. https://doi.org/10.1023/A:1027331727034 (1997).

    Article  Google Scholar 

  • 24.

    Augustine, D. J., Manzon, A., Klopp, C. & Elter, J. Habitat selection and group foraging of the springhare, Pedetes capensis larvalis Hollister, East Africa. Afr. J. Ecol. 33, 347–357 (1995).

    Article  Google Scholar 

  • 25.

    Peinke, D. M. & Brown, C. R. Habitat use by the southern springhare (Pedetes capensis) in the Eastern Cape Province, South Africa. S. Afr. J. Wildl. Res. 36(2), 103–111 (2006).

    Google Scholar 

  • 26.

    Kennedy, G. Y. & Vevers, H. G. The occurrence of porphyrins in certain marine invertebrates. J. Mar. Biol. Ass. UK 33, 663–576 (1954).

    CAS  Article  Google Scholar 

  • 27.

    Comfort, A. The pigmentation of molluscan shells. Biol. Rev. 26, 285–301. https://doi.org/10.1111/j.1469-185X.1951.tb01358.x (1951).

    CAS  Article  Google Scholar 

  • 28.

    Thomas, D. B., McGoverin, C. M., McGraw, K. J., James, H. F. & Madden, O. Vibrational spectroscopic analyses of unique yellow feather pigments (spheniscins) in penguins. J. R. Soc. Interface 10, 20121065. https://doi.org/10.1098/rsif.2012.1065 (2012).

    Article  Google Scholar 

  • 29.

    With, T. K. On porphyrins in feathers of owls and bustards. Int. J. Biochem. 9, 893–895 (1978).

    CAS  Article  Google Scholar 

  • 30.

    With, T. K. Pure unequivocal uroporphyrin III simplified method of preparation from turaco feathers. J. Clin. Lab Invest. 9, 398–401 (1957).

    CAS  Article  Google Scholar 

  • 31.

    Dooley, A. C. Jr. & Moncrief, N. D. Fluorescence provides evidence of congenital erythropoietic porphyria in 7000-year-old specimens of the eastern fox squirrel (Sciurus niger) from the Devil’s Den. J. Vert. Paleontol. 32, 495–497 (2012).

    Article  Google Scholar 

  • 32.

    Ajioka, R. S., Phillips, J. D. & Kushner, J. P. Biosynthesis of heme in mammals. Biochem. Biophys. Acta. 1763, 723–736. https://doi.org/10.1016/j.bbamcr.2006.05.005 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 33.

    Seo, I., Tseng, S. H., Cula, G. O., Bargo, P. R. & Kollias, N. Fluorescence spectroscopy for endogenous porphyrins in human facial skin. Proc. SPIE. https://doi.org/10.1117/12.811913 (2009).

    Article  Google Scholar 

  • 34.

    Heckl, C. et al. Rapid spectrophotometric quantification of urinary porphyrins and porphobilinogen as screening tool for attacks of acute porphyria. Proc. SPIE. https://doi.org/10.1117/12.2527105 (2019).

    Article  Google Scholar 

  • 35.

    Levin, E. Y. & Flyger, V. Erythropoietic Porphyria of Fox Squirrel Sciurus niger. J. Clin. Invest. 52, 96–105 (1973).

    CAS  Article  Google Scholar 

  • 36.

    Turner, W. J. Studies on porphyria. I. Observations on the fox squirrel, Sciurus niger. J. Biol. Chem. 118, 519–530 (1937).

    CAS  Article  Google Scholar 

  • 37.

    Rivera, D. F. & Leung, L.K.-P. A rare autosomal recessive condition, congenital erythropoietic porphyria, found in canefield rat Rattus sordidus Gould 1858. Integative Zool. 216–218, 2008. https://doi.org/10.1111/j.1749-4877.2008.00088.x (2008).

    Article  Google Scholar 

  • 38.

    Bickers, D. R., Keogh, L., Rifkind, A. B., Harber, L. C. & Kappas, A. Studies in porphyria VI. Biosynthesis of porphyrins in mammalian skin and in the skin of porphyric patients. J. Invest. Dermatol. 68(1), 5–9. https://doi.org/10.1111/1523-1747.ep12485121 (1977).

    CAS  Article  PubMed  Google Scholar 

  • 39.

    Yolton, R. L., Yolton, D. P., Renz, J. & Jacobs, G. H. Preretinal absorbance in sciurid eyes. J. Mammal. 55, 14–20 (1974).

    CAS  Article  Google Scholar 

  • 40.

    Friedmann, H. C. & Baldwin, E. T. Reverse-phase purification and silica gel thin-layer chromatography of porphyrin carboxylic acids. Anal. Biochem 137, 473–480 (1984).

    CAS  Article  Google Scholar 

  • 41.

    Lim, C. K. & Peters, T. J. Urine and faecal porphyrin profiles by reversed-phase high performance liquid chromatography in the porphyrias. Clin. Chim. Acta. 139, 55–63 (1984).

    CAS  Article  Google Scholar 

  • 42.

    To-Figueras, J., Ozalla, D. & Mateu, C. H. Long-standing changes in the urinary profile of porphyrin isomers after clinical remission of porphyria cutanea tarda. Ann. Clin. Lab. Sci. 33, 251–256 (2003).

    CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Reply to: Concerns about phytoplankton bloom trends in global lakes

    The catalyzing potential of J-WAFS seed grants