in

Volatile 1-octanol of tea (Camellia sinensis L.) fuels cell division and indole-3-acetic acid production in phylloplane isolate Pseudomonas sp. NEEL19

  • 1.

    Alasalvar, C. et al. Flavor characteristics of seven grades of black tea produced in Turkey. J. Agric. Food Chem. 60, 6323–6332 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Lau, H. et al. Characterising volatiles in tea (Camellia sinensis). Part I: comparison of headspace-solid phase microextraction and solvent assisted flavour evaporation. LWT-Food Sci. Technol. 94, 178–189 (2018).

    CAS  Article  Google Scholar 

  • 3.

    Yang, Y. Q. et al. Characterization of the volatile components in green tea by IRAE-HS-SPME/GC-MS combined with multivariate analysis. PLoS ONE 13, e0193393 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 4.

    Magagna, F. et al. Black tea volatiles fingerprinting by comprehensive two-dimensional gas chromatography – Mass spectrometry combined with high concentration capacity sample preparation techniques: toward a fully automated sensomic assessment. Food Chem. 225, 276–287 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Zhu, Y., Lv, H. P., Dai, W. D. & Li, G. Separation of aroma components in Xihu Longjing tea using simultaneous distillation extraction with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Sep. Purif. Technol. 164, 146–154 (2016).

    CAS  Article  Google Scholar 

  • 6.

    Baba, R. & Kumazawa, K. Characterization of the potent odorants contributing to the characteristic aroma of Chinese green tea infusions by aroma extract dilution analysis. J. Agric. Food Chem. 62, 8308–8313 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Schuh, C. & Schieberle, P. Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea: quantitative differences between tea leaves and infusion. J. Agric. Food Chem. 54, 916–924 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 8.

    Kumazawa, K. & Masuda, H. Identification of potent odorants in different green tea varieties using flavor dilution technique. J. Agric. Food Chem. 50, 5660–5663 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 9.

    Nose, M., Nakatani, Y. & Yamanishi, T. Studies on flavor of green tea. 9. Identification and composition of intermediate and high boiling constituents in green tea flavor. Agric. Biol. Chem. 35, 261–271 (1971).

    CAS  Google Scholar 

  • 10.

    Farre-Armengol, G., Filella, I., Llusia, J. & Penuelas, J. Bidirectional interaction between phyllospheric microbiotas and plant volatile emissions. Trends Plant Sci. 21, 854–860 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Junker, R. R. & Tholl, D. Volatile organic compound mediated interactions at the plant-microbe interface. J. Chem. Ecol. 39, 810–825 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Huang, M. et al. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-beta-caryophyllene, is a defense against a bacterial pathogen. New Phytol. 193, 997–1008 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 13.

    Rossi, P. G. et al. (E)-methylisoeugenol and elemicin: antibacterial components of Daucus carota L. essential oil against Campylobacter jejuni. J. Agric. Food Chem. 55, 7332–7336 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 14.

    Gao, Y., Jin, Y. J., Li, H. D. & Chen, H. J. Volatile organic compounds and their roles in bacteriostasis in five conifer species. J. Integr. Plant Biol. 47, 499–507 (2005).

    CAS  Article  Google Scholar 

  • 15.

    Karamanoli, K., Menkissoglu-Spiroudi, U., Bosabalidis, A. M., Vokou, D. & Constantinidou, H. I. A. Bacterial colonization of the phyllosphere of nineteen plant species and antimicrobial activity of their leaf secondary metabolites against leaf associated bacteria. Chemoecology 15, 59–67 (2005).

    Article  Google Scholar 

  • 16.

    Utama, I. M., Wills, R. B., Ben-Yehoshua, S. & Kuek, C. In vitro efficacy of plant volatiles for inhibiting the growth of fruit and vegetable decay microorganisms. J. Agric. Food Chem. 50, 6371–6377 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Unsicker, S. B., Kunert, G. & Gershenzon, J. Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Curr. Opin. Plant Biol. 12, 479–485 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 18.

    Abanda-Nkpwatt, D., Musch, M., Tschiersch, J., Boettner, M. & Schwab, W. Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J. Exp. Bot. 57, 4025–4032 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Sy, A., Timmers, A. C. J., Knief, C. & Vorholt, J. A. Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl. Environ. Microbiol. 71, 7245–7252 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Marmulla, R. & Harder, J. Microbial monoterpene transformations-a review. Front. Microbiol. 5, 1–14 (2014).

    Article  Google Scholar 

  • 21.

    Scala, A., Allmann, S., Mirabella, R., Haring, M. A. & Schuurink, R. C. Green leaf volatiles: a plant’s multifunctional weapon against herbivores and pathogens. Int. J. Mol. Sci. 14, 17781–17811 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Han, B. Y. & Chen, Z. M. Composition of the volatiles from intact and tea aphid-damaged tea shoots and their allurement to several natural enemies of the tea aphid. J. Appl. Entomol. 126, 497–500 (2002).

    CAS  Article  Google Scholar 

  • 23.

    Han, B. Y., Zhang, Q. H. & Byers, J. A. Attraction of the tea aphid, Toxoptera aurantii, to combinations of volatiles and colors related to tea plants. Entomol. Exp. Appl. 144, 258–269 (2012).

    Article  Google Scholar 

  • 24.

    Kubo, I., Muroi, H. & Himejima, M. Antimicrobial activity of green tea flavor components and their combination effects. J. Agric. Food Chem. 40, 245–248 (1992).

    CAS  Article  Google Scholar 

  • 25.

    Cuenca Mdel, S. et al. Understanding butanol tolerance and assimilation in Pseudomonas putida BIRD-1: an integrated omics approach. Microb. Biotechnol. 9, 100–115 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 26.

    Neumann, G. et al. Cells of Pseudomonas putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size. Extremophiles 9, 163–168 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Heipieper, H. J., de Waard, P., van der Meer, P. & Killian, J. A. Regiospecific effect of 1-octanol on cistrans isomerization of unsaturated fatty acids in the solvent-tolerant strain Pseudomonas putida S12. Appl. Microbiol. Biotechnol. 57, 541–547 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Inoue, A. & Horikoshi, K. A Pseudomonas thrives in high-concentrations of toluene. Nature 338, 264–266 (1989).

    ADS  CAS  Article  Google Scholar 

  • 29.

    Fletcher, M. The effects of methanol, ethanol, propanol and butanol on bacterial attachment to surfaces. J. Gen. Microbiol. 129, 633–641 (1983).

    CAS  Google Scholar 

  • 30.

    Junker, R. R. et al. Composition of epiphytic bacterial communities differs on petals and leaves. Plant Biol. 13, 918–924 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 31.

    Patten, C. L. & Glick, B. R. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 42, 207–220 (1996).

    CAS  PubMed  Article  Google Scholar 

  • 32.

    Duca, D., Lorv, J., Patten, C. L., Rose, D. & Glick, B. R. Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek 106, 85–125 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 33.

    Wei, K., Ruan, L., Wang, L. & Cheng, H. Auxin-induced adventitious root formation in nodal cuttings of Camellia sinensis. Int. J. Mol. Sci. 20, 4817 (2019).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  • 34.

    Spaepen, S., Vanderleyden, J. & Remans, R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31, 425–448 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 35.

    Tohya, M. et al. Pseudomonas juntendi sp. nov., isolated from patients in Japan and Myanmar. Int. J. Syst. Evol. Microbiol. 69, 3377–3384 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Keshavarz-Tohid, V. et al. Genomic, phylogenetic and catabolic re-assessment of the Pseudomonas putida clade supports the delineation of Pseudomonas alloputida sp. nov., Pseudomonas inefficax sp. nov., Pseudomonas persica sp nov, and Pseudomonas shirazica sp. nov. Syst. Appl. Microbiol. 42, 468–480 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Dabboussi, F. et al. Pseudomonas mosselii sp. nov., a novel species isolated from clinical specimens. Syst. Evol. Microbiol. 52, 363–376 (2002).

    CAS  Article  Google Scholar 

  • 38.

    Kieboom, J., Dennis, J. J., Zylstra, G. J. & de Bont, J. A. Active efflux of organic solvents by Pseudomonas putida S12 is induced by solvents. J. Bacteriol. 180, 6769–6772 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Blank, L. M., Ionidis, G., Ebert, B. E., Buhler, B. & Schmid, A. Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase. FEBS J. 275, 5173–5190 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 40.

    Halan, B., Vassilev, I., Lang, K., Schmid, A. & Buehler, K. Growth of Pseudomonas taiwanensis VLB120ΔC biofilms in the presence of n-butanol. Microb. Biotechnol. 10, 745–755 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 41.

    Hameed, A. et al. Draft genome sequence reveals co-occurrence of multiple antimicrobial resistance and plant probiotic traits in rice root endophytic strain Burkholderia sp. LS-044 affiliated to Burkholderia cepacia complex. J. Glob. Antimicrob. Resist. 20, 28–30 (2020).

    PubMed  Article  Google Scholar 

  • 42.

    Senthilkumar, S. R., Sivakumar, T., Arulmozhi, K. T. & Mythili, N. FT-IR analysis and correlation studies on the antioxidant activity, total phenolics and total flavonoids of Indian commercial teas (Camellia sinensis L.)—a novel approach. Int. Res. J. Biol. Sci. 6, 1–7 (2017).

    Google Scholar 

  • 43.

    Baker, C. N. & Tenover, F. C. Evaluation of Alamar colorimetric broth microdilution susceptibility testing method for staphylococci and enterococci. J. Clin. Microbiol. 34, 2654–2659 (1996).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Reguera, G. Microbial nanowires and electroactive biofilms. FEMS Microbiol. Ecol. 94, 1–13 (2018).

    Article  CAS  Google Scholar 

  • 45.

    Reguera, G. et al. Extracellular electron transfer via microbial nanowires. Nature 435, 1098–1101 (2005).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 46.

    Prusty, R., Grisafi, P. & Fink, G. R. The plant hormone indoleacetic acid induces invasive growth in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 101, 4153–4157 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 47.

    Bianco, C. et al. Indole-3-acetic acid improves Escherichia coli’s defences to stress. Arch. Microbiol. 185, 373–382 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 48.

    Council of Europe. European Pharmacopoeia 3rd edn. (Council of Europe, Strasbourg, 1997).

    Google Scholar 

  • 49.

    Shahina, M. et al. Sphingomicrobium astaxanthinifaciens sp. nov., an astaxanthin-producing glycolipid-rich bacterium isolated from surface seawater and emended description of the genus Sphingomicrobium. Int. J. Syst. Evol. Microbiol. 63, 3415–3422 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 50.

    Yoon, S. H. et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Hardy, R., Burns, R. C. & Holsten, R. D. Application of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol. Biochem. 5, 47–81 (1973).

    CAS  Article  Google Scholar 

  • 52.

    Koch, B. & Evans, H. J. Reduction of acetylene to ethylene by soybean root nodules. Plant Physiol. 41, 1748–1750 (1966).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Gordon, S. A. & Weber, R. P. Colorimetric estimation of indoleacetic acid. Plant Physiol. 26, 192–195 (1951).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Schwyn, B. & Neilands, J. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47–56 (1987).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 55.

    Smibert, R. M. & Krieg, N. R. Phenotypic Characterization. In Methods for General and Molecular Bacteriology (eds Gerhardt, P. et al.) 607–654 (American Society for Microbiology, Washington, D.C, 1994).

    Google Scholar 

  • 56.

    Rashid, M. H. & Kornberg, A. Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 97, 4885–4890 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 57.

    Ha, D. G., Kuchma, S. L. & O’Toole, G. A. Plate-Based Assay for Swimming Motility in Pseudomonas aeruginosa. Methods Mol. Biol. 1149, 59–65 (2014).

    PubMed  Article  Google Scholar 


  • Source: Ecology - nature.com

    Geologists produce new timeline of Earth’s Paleozoic climate changes

    Sludge amendment accelerating reclamation process of reconstructed mining substrates