in

Warming impacts potential germination of non-native plants on the Antarctic Peninsula

  • 1.

    Bennett, J. R. et al. Polar lessons learned: long-term management based on shared threats in Arctic and Antarctic environments. Front. Ecol. Environ. 13, 316–324 (2015).

    Article 

    Google Scholar 

  • 2.

    Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95, 1511–1534 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 3.

    Convey, P. et al. The spatial structure of Antarctic biodiversity. Ecol. Monogr. 84, 203–244 (2014).

    Article 

    Google Scholar 

  • 4.

    Turner, J. et al. Antarctic climate change and the environment: an update. Polar Rec. 50, 237–259 (2014).

    Article 

    Google Scholar 

  • 5.

    Siegert, M., et al. The Antarctic Peninsula under a 1.5 °C global warming scenario. Front. Environ. Sci. 7 (2019).

  • 6.

    Huiskes, A. H. L. et al. Aliens in Antarctica: assessing transfer of plant propagules by human visitors to reduce invasion risk. Biol. Conserv. 171, 278–284 (2014).

    Article 

    Google Scholar 

  • 7.

    Hughes, K. A., Pertierra, L. R., Molina-Montenegro, M. A. & Convey, P. Biological invasions in terrestrial Antarctica: what is the current status and can we respond? Biodivers. Conserv. 24, 1031–1055 (2015).

    Article 

    Google Scholar 

  • 8.

    Molina-Montenegro, M. A., et al. Assessing the importance of human activities for the establishment of the invasive Poa annua in Antarctica. Polar Res. 33, https://doi.org/10.3402/polar.v33.21425 (2014).

  • 9.

    Whinam, J., Chilcott, N. & Bergstrom, D. M. Subantarctic hitchhikers: expeditioners as vectors for the introduction of alien organisms. Biol. Conserv. 121, 207–219 (2005).

    Article 

    Google Scholar 

  • 10.

    Hughes, K. A. et al. Invasive non-native species likely to threaten biodiversity and ecosystems in the Antarctic Peninsula region. Glob. Change Biol. 26, 2702–2716 (2020).

    Article 

    Google Scholar 

  • 11.

    Osyczka, P. Alien lichens unintentionally transported to the “Arctowski” station (South Shetlands, Antarctica). Polar Biol. 33, 1067–1073 (2010).

    Article 

    Google Scholar 

  • 12.

    Chown, S. L. et al. Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proc. Natl Acad. Sci. USA 109, 4938–4943 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Hughes, K. A., Greenslade, P. & Convey, P. The fate of the non-native Collembolon, Hypogastrura viatica, at the southern extent of its introduced range in Antarctica. Polar Biol. 40, 2127–2131 (2017).

    Article 

    Google Scholar 

  • 14.

    Lee, J. E. & Chown, S. L. Breaching the dispersal barrier to invasion: quantification and management. Ecol. Appl. 19, 1944–1959 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 15.

    Tsujimoto, M. & Imura, S. Does a new transportation system increase the risk of importing non-native species to Antarctica? Antarct. Sci. 24, 441–449 (2012).

    Article 

    Google Scholar 

  • 16.

    Duffy, G. A. et al. Barriers to globally invasive species are weakening across the Antarctic. Divers. Distrib. 23, 982–996 (2017).

    Article 

    Google Scholar 

  • 17.

    Convey, P., Hopkins, D. W., Roberts, S. J. & Tyler, A. N. Global southern limit of flowering plants and moss peat accumulation. Polar Res. 30, 8929 (2011).

    Article 

    Google Scholar 

  • 18.

    Bergstrom, D. M. & Chown, S. L. Life at the front: history, ecology and change on southern ocean islands. Trends Ecol. Evolut. 14, 472–477 (1999).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Gremmen, N. J. M., Chown, S. L. & Marshall, D. J. Impact of the introduced grass Agrostis stolonifera on vegetation and soil fauna communities at Marion Island, sub-Antarctic. Biol. Conserv. 85, 223–231 (1998).

    Article 

    Google Scholar 

  • 20.

    Cavieres, L. A., Sanhueza, A. K., Torres-Mellado, G. & Casanova-Katny, A. Competition between native Antarctic vascular plants and invasive Poa annua changes with temperature and soil nitrogen availability. Biol. Invasions 20, 1597–1610 (2018).

    Article 

    Google Scholar 

  • 21.

    Molina-Montenegro, M. A., et al. Increasing impacts by Antarctica’s most widespread invasive plant species as result of direct competition with native vascular plants. Neobiota 51, 19–40 (2019).

  • 22.

    Molina-Montenegro, M. A. et al. Occurrence of the non-native annual bluegrass on the Antarctic mainland and its negative effects on native plants. Conserv. Biol. 26, 717–723 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 23.

    Frenot, Y. et al. Biological invasions in the Antarctic: extent, impacts and implications. Biol. Rev. 80, 45–72 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 24.

    Leihy, R. I., Duffy, G. A. & Chown, S. L. Species richness and turnover among indigenous and introduced plants and insects of the Southern Ocean Islands. Ecosphere 9, 15 (2018).

    Article 

    Google Scholar 

  • 25.

    Graae, B. J. et al. On the use of weather data in ecological studies along altitudinal and latitudinal gradients. Oikos 121, 3–19 (2012).

    Article 

    Google Scholar 

  • 26.

    Convey, P., Coulson, S. J., Worland, M. R. & Sjöblom, A. The importance of understanding annual and shorter-term temperature patterns and variation in the surface levels of polar soils for terrestrial biota. Polar Biol. 41, 1587–1605 (2018).

    Article 

    Google Scholar 

  • 27.

    Edwards, J. A. An experimental introduction of vascular plants from South Georgia to the Maritime Antarctic. Br. Antarct. Surv. Bull. 49, 73–80 (1979).

    Google Scholar 

  • 28.

    Corte, A. La primera fanerogama adventicia hallada en el continente Antartico. Inst. Antártico Argent. 62, 1–14 (1961).

    Google Scholar 

  • 29.

    Pertierra, L. R. et al. Global thermal niche models of two European grasses show high invasion risks in Antarctica. Glob. Change Biol. 23, 2863–2873 (2017).

    Article 

    Google Scholar 

  • 30.

    Macloskie, G. The Patagonian flora. Plant World 10, 97–103 (1907).

    Google Scholar 

  • 31.

    Pertierra, L. R. et al. Assessing the invasive risk of two non-native Agrostis species on sub-Antarctic Macquarie Island. Polar Biol. 39, 2361–2371 (2016).

    Article 

    Google Scholar 

  • 32.

    Bokhorst, S. et al. Climate change effects on soil arthropod communities from the Falkland Islands and the Maritime Antarctic. Soil Biol. Biochem. 40, 1547–1556 (2008).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Chwedorzewska, K. J. et al. Poa annua L. in the maritime Antarctic: an overview. Polar Rec. 51, 637–643 (2015).

    Article 

    Google Scholar 

  • 34.

    Zhang, H. et al. Is the proportion of clonal species higher at higher latitudes in Australia? Austral. Ecol. 43, 69–75 (2018).

    Article 

    Google Scholar 

  • 35.

    Holtom, A. & Greene, S. W. The growth and reproduction of Antarctic flowering plants. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 252, 323–337 (1967).

    Google Scholar 

  • 36.

    Vera, M. L. Colonization and demographic structure of Deschampsia antarctica and Colobanthus quitensis along an altitudinal gradient on Livingston Island, South Shetland Islands, Antarctica. Polar Res. 30, 7146 (2011).

    Article 

    Google Scholar 

  • 37.

    Convey, P. The influence of environmental characteristics on life history attributes of Antarctic terrestrial biota. Biol. Rev. Camb. Philos. Soc. 71, 191–225 (1996).

    Article 

    Google Scholar 

  • 38.

    Pertierra, L. R., Lara, F., Benayas, J. & Hughes, K. A. Poa pratensis L., current status of the longest-established non-native vascular plant in the Antarctic. Polar Biol. 36, 1473–1481 (2013).

    Article 

    Google Scholar 

  • 39.

    Williams, L. K. et al. Longevity, growth and community ecology of invasive Poa annua across environmental gradients in the subantarctic. Basic Appl. Ecol. 29, 20–31 (2018).

    Article 

    Google Scholar 

  • 40.

    Pertierra, L. et al. Eradication of the non-native Poa pratensis colony at Cierva Point, Antarctica: a case study of international cooperation and practical management in an area under multi-party governance. Environ. Sci. Policy 69, 50–56 (2016).

    Article 

    Google Scholar 

  • 41.

    Hughes, K. A. & Convey, P. The protection of Antarctic terrestrial ecosystems from inter- and intra-continental transfer of non-indigenous species by human activities: a review of current systems and practices. Glob. Environ. Change 20, 96–112 (2010).

    Article 

    Google Scholar 

  • 42.

    Smith, R. I. L. Introduced plants in Antarctica: potential impacts and conservation issues. Biol. Conserv. 76, 135–146 (1996).

    Article 

    Google Scholar 

  • 43.

    Thompson, K., Grime, J. P. & Mason, G. Seed germination in response to diurnal fluctuations of temperature. Nature 267, 147–149 (1977).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    McGeoch, M. A. et al. Monitoring biological invasion across the broader Antarctic: a baseline and indicator framework. Glob. Environ. Change 32, 108–125 (2015).

    Article 

    Google Scholar 

  • 45.

    Kellmann-Sopyła, W. & Giełwanowska, I. Germination capacity of five polar Caryophyllaceae and Poaceae species under different temperature conditions. Polar Biol. 38, 1753–1765 (2015).

    Article 

    Google Scholar 

  • 46.

    Körner, C. Alpine Treelines: Functional Ecology of the Global High Elevation Tree Limits. 1–220 (2012).

  • 47.

    Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2, 453–457 (2012).

    Article 

    Google Scholar 

  • 48.

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 49.

    Billings, W. D. Constraints to plant growth, reproduction, and establishment in Arctic environments. Arct. Alp. Res. 19, 357–365 (1987).

    Article 

    Google Scholar 

  • 50.

    Block, W., Smith, R. I. L. & Kennedy, A. D. Strategies of survival and resource exploitation in the Antarctic fellfield ecosystem. Biol. Rev. 84, 449–484 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 51.

    Aerts, R. & Chapin, F. S. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv. Ecol. Res. 30, 1–67 (2000).

    CAS 

    Google Scholar 

  • 52.

    Barrand, N. E. et al. Trends in Antarctic Peninsula surface melting conditions from observations and regional climate modeling. J. Geophys. Res. 118, 315–330 (2013).

    Article 

    Google Scholar 

  • 53.

    Walton, D. W. H. The Signy Island terrestrial reference sites: XV. Micro-climate monitoring, 1972-1974. Br. Antarct. Surv. Bull. 55, 111–126 (1982).

    Google Scholar 

  • 54.

    Smith, R. I. L. Bryophyte oases in Ablation Valleys on Alexander Island, Antarctica. Bryologist 91, 45–50 (1988).

  • 55.

    Hunt, H. W., Fountain, A. G., Doran, P. T. & Basagic, H. A dynamic physical model for soil temperature and water in Taylor Valley, Antarctica. Antarct. Sci. 22, 419–434 (2010).

    Article 

    Google Scholar 

  • 56.

    Bracegirdle, T. J., Barrand, N. E., Kusahara, K. & Wainer, I. Predicting Antarctic climate using climate models. Antarctic Environ. Portal https://doi.org/10.18124/5wq2-0154 (2016).

  • 57.

    De Boeck, H. J., De Groote, T. & Nijs, I. Leaf temperatures in glasshouses and open-top chambers. N. Phytol. 194, 1155–1164 (2012).

    Article 

    Google Scholar 

  • 58.

    Greenspan, S. E. et al. Low-cost fluctuating-temperature chamber for experimental ecology. Methods Ecol. Evolut. 7, 1567–1574 (2016).

    Article 

    Google Scholar 

  • 59.

    Bokhorst, S. et al. Contrasting survival and physiological responses of sub-Arctic plant types to extreme winter warming and nitrogen. Planta 247, 635–648 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 60.

    Litaor, M. I., Williams, M. & Seastedt, T. R. Topographic controls on snow distribution, soil moisture, and species diversity of herbaceous alpine vegetation, Niwot Ridge, Colorado. J. Geophys. Res. 113 (2008).

  • 61.

    Taulavuori, K., Sarala, M. & Taulavuori, E. Growth responses of trees to Arctic light environment. (eds U. Lüttge, W. Beyschlag, B. Büdel, and D. Francis). 157–168. (Springer, Berlin).

  • 62.

    Goncharova, O. et al. Influence of snow cover on soil temperatures: meso- and micro-scale topographic effects (a case study from the northern West Siberia discontinuous permafrost zone). Catena 183, 104224 (2019).

    Article 

    Google Scholar 

  • 63.

    Upson, R., et al. Field Guide to the Introduced Flora of South Georgia. (Royal Botanical Gardens, Kew, 2017).

  • 64.

    Allen, S. E. & Heal, O. W. Soils of the Maritime Antarctic zone. (eds M. W. Holdgate). 693–696, (Academic Press, London, 1970).

  • 65.

    Bölter, M. Soil development and soil biology on King George Island, Maritime Antarctic. Pol. Polar Res. 32, 105–116 (2011).

    Article 

    Google Scholar 

  • 66.

    Duffy, G. A. & Lee, J. R. Ice-free area expansion compounds the non-native species threat to Antarctic terrestrial biodiversity. Biol. Conserv. 232, 253–257 (2019).

    Article 

    Google Scholar 

  • 67.

    Lee, J. R. et al. Climate change drives expansion of Antarctic ice-free habitat. Nature 547, 49–54 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 68.

    Bokhorst, S., Huiskes, A., Convey, P. & Aerts, R. The effect of environmental change on vascular plant and cryptogam communities from the Falkland Islands and the Maritime Antarctic. BMC Ecol. 7, 15 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 69.

    IPCC, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (ed T. F. Stocker, et al.) 1535 (Cambridge, 2013).

  • 70.

    Bracegirdle, T. J. et al. Back to the future: using long-term observational and paleo-proxy reconstructions to improve model projections of antarctic climate. Geosciences 9, 255 (2019).

    Article 

    Google Scholar 

  • 71.

    Royles, J. et al. Carbon isotope evidence for recent climate-related enhancement of CO2 assimilation and peat accumulation rates in Antarctica. Glob. Change Biol. 18, 3112–3124 (2012).

    Article 

    Google Scholar 

  • 72.

    Tang, M. S. Y. et al. Precipitation instruments at Rothera Station, Antarctic Peninsula: a comparative study. Polar Res. 37, 1503906 (2018).

    Article 

    Google Scholar 

  • 73.

    Bokhorst, S. et al. Microclimate impacts of passive warming methods in Antarctica: implications for climate change studies. Polar Biol. 34, 1421–1435 (2011).

    Article 

    Google Scholar 

  • 74.

    Hiltbrunner, E. et al. Ecological consequences of the expansion of N2-fixing plants in cold biomes. Oecologia 176, 11–24 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 75.

    Convey, P., et al. Microclimate data from Anchorage Island, 2001–2009. (2020).

  • 76.

    Convey, P., et al. Microclimate data from Coal Nunatak, 2006–2019. (2020).

  • 77.

    Convey, P., et al. Microclimate data from Mars Oasis, 2000–2019. (2020).

  • 78.

    Moore, D. M. The vascular Flora of the Falkland Islands. Br. Antarct. Surv. Sci. Rep. 60, 4–202 (1968).

    Google Scholar 

  • 79.

    Oliva, M. et al. Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere. Sci. Total Environ. 580, 210–223 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 80.

    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12, 361–371 (2003).

    Article 

    Google Scholar 

  • 81.

    RCoreTeam, R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, 2015).

  • 82.

    Bokhorst, S., Convey, P., Casanova, A. & Aerts, R. Warming impacts on potential germination of non-native plants on the Antarctic Peninsula. https://npdc.nl/dataset/d350edc1-e31e-51b9-aa37-d11365e6bc2b (2020).


  • Source: Ecology - nature.com

    Old-growth forest carbon sinks overestimated

    MIT engineers make filters from tree branches to purify drinking water