Bennett, J. R. et al. Polar lessons learned: long-term management based on shared threats in Arctic and Antarctic environments. Front. Ecol. Environ. 13, 316–324 (2015).
Google Scholar
Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95, 1511–1534 (2020).
Google Scholar
Convey, P. et al. The spatial structure of Antarctic biodiversity. Ecol. Monogr. 84, 203–244 (2014).
Google Scholar
Turner, J. et al. Antarctic climate change and the environment: an update. Polar Rec. 50, 237–259 (2014).
Google Scholar
Siegert, M., et al. The Antarctic Peninsula under a 1.5 °C global warming scenario. Front. Environ. Sci. 7 (2019).
Huiskes, A. H. L. et al. Aliens in Antarctica: assessing transfer of plant propagules by human visitors to reduce invasion risk. Biol. Conserv. 171, 278–284 (2014).
Google Scholar
Hughes, K. A., Pertierra, L. R., Molina-Montenegro, M. A. & Convey, P. Biological invasions in terrestrial Antarctica: what is the current status and can we respond? Biodivers. Conserv. 24, 1031–1055 (2015).
Google Scholar
Molina-Montenegro, M. A., et al. Assessing the importance of human activities for the establishment of the invasive Poa annua in Antarctica. Polar Res. 33, https://doi.org/10.3402/polar.v33.21425 (2014).
Whinam, J., Chilcott, N. & Bergstrom, D. M. Subantarctic hitchhikers: expeditioners as vectors for the introduction of alien organisms. Biol. Conserv. 121, 207–219 (2005).
Google Scholar
Hughes, K. A. et al. Invasive non-native species likely to threaten biodiversity and ecosystems in the Antarctic Peninsula region. Glob. Change Biol. 26, 2702–2716 (2020).
Google Scholar
Osyczka, P. Alien lichens unintentionally transported to the “Arctowski” station (South Shetlands, Antarctica). Polar Biol. 33, 1067–1073 (2010).
Google Scholar
Chown, S. L. et al. Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proc. Natl Acad. Sci. USA 109, 4938–4943 (2012).
Google Scholar
Hughes, K. A., Greenslade, P. & Convey, P. The fate of the non-native Collembolon, Hypogastrura viatica, at the southern extent of its introduced range in Antarctica. Polar Biol. 40, 2127–2131 (2017).
Google Scholar
Lee, J. E. & Chown, S. L. Breaching the dispersal barrier to invasion: quantification and management. Ecol. Appl. 19, 1944–1959 (2009).
Google Scholar
Tsujimoto, M. & Imura, S. Does a new transportation system increase the risk of importing non-native species to Antarctica? Antarct. Sci. 24, 441–449 (2012).
Google Scholar
Duffy, G. A. et al. Barriers to globally invasive species are weakening across the Antarctic. Divers. Distrib. 23, 982–996 (2017).
Google Scholar
Convey, P., Hopkins, D. W., Roberts, S. J. & Tyler, A. N. Global southern limit of flowering plants and moss peat accumulation. Polar Res. 30, 8929 (2011).
Google Scholar
Bergstrom, D. M. & Chown, S. L. Life at the front: history, ecology and change on southern ocean islands. Trends Ecol. Evolut. 14, 472–477 (1999).
Google Scholar
Gremmen, N. J. M., Chown, S. L. & Marshall, D. J. Impact of the introduced grass Agrostis stolonifera on vegetation and soil fauna communities at Marion Island, sub-Antarctic. Biol. Conserv. 85, 223–231 (1998).
Google Scholar
Cavieres, L. A., Sanhueza, A. K., Torres-Mellado, G. & Casanova-Katny, A. Competition between native Antarctic vascular plants and invasive Poa annua changes with temperature and soil nitrogen availability. Biol. Invasions 20, 1597–1610 (2018).
Google Scholar
Molina-Montenegro, M. A., et al. Increasing impacts by Antarctica’s most widespread invasive plant species as result of direct competition with native vascular plants. Neobiota 51, 19–40 (2019).
Molina-Montenegro, M. A. et al. Occurrence of the non-native annual bluegrass on the Antarctic mainland and its negative effects on native plants. Conserv. Biol. 26, 717–723 (2012).
Google Scholar
Frenot, Y. et al. Biological invasions in the Antarctic: extent, impacts and implications. Biol. Rev. 80, 45–72 (2005).
Google Scholar
Leihy, R. I., Duffy, G. A. & Chown, S. L. Species richness and turnover among indigenous and introduced plants and insects of the Southern Ocean Islands. Ecosphere 9, 15 (2018).
Google Scholar
Graae, B. J. et al. On the use of weather data in ecological studies along altitudinal and latitudinal gradients. Oikos 121, 3–19 (2012).
Google Scholar
Convey, P., Coulson, S. J., Worland, M. R. & Sjöblom, A. The importance of understanding annual and shorter-term temperature patterns and variation in the surface levels of polar soils for terrestrial biota. Polar Biol. 41, 1587–1605 (2018).
Google Scholar
Edwards, J. A. An experimental introduction of vascular plants from South Georgia to the Maritime Antarctic. Br. Antarct. Surv. Bull. 49, 73–80 (1979).
Corte, A. La primera fanerogama adventicia hallada en el continente Antartico. Inst. Antártico Argent. 62, 1–14 (1961).
Pertierra, L. R. et al. Global thermal niche models of two European grasses show high invasion risks in Antarctica. Glob. Change Biol. 23, 2863–2873 (2017).
Google Scholar
Macloskie, G. The Patagonian flora. Plant World 10, 97–103 (1907).
Pertierra, L. R. et al. Assessing the invasive risk of two non-native Agrostis species on sub-Antarctic Macquarie Island. Polar Biol. 39, 2361–2371 (2016).
Google Scholar
Bokhorst, S. et al. Climate change effects on soil arthropod communities from the Falkland Islands and the Maritime Antarctic. Soil Biol. Biochem. 40, 1547–1556 (2008).
Google Scholar
Chwedorzewska, K. J. et al. Poa annua L. in the maritime Antarctic: an overview. Polar Rec. 51, 637–643 (2015).
Google Scholar
Zhang, H. et al. Is the proportion of clonal species higher at higher latitudes in Australia? Austral. Ecol. 43, 69–75 (2018).
Google Scholar
Holtom, A. & Greene, S. W. The growth and reproduction of Antarctic flowering plants. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 252, 323–337 (1967).
Vera, M. L. Colonization and demographic structure of Deschampsia antarctica and Colobanthus quitensis along an altitudinal gradient on Livingston Island, South Shetland Islands, Antarctica. Polar Res. 30, 7146 (2011).
Google Scholar
Convey, P. The influence of environmental characteristics on life history attributes of Antarctic terrestrial biota. Biol. Rev. Camb. Philos. Soc. 71, 191–225 (1996).
Google Scholar
Pertierra, L. R., Lara, F., Benayas, J. & Hughes, K. A. Poa pratensis L., current status of the longest-established non-native vascular plant in the Antarctic. Polar Biol. 36, 1473–1481 (2013).
Google Scholar
Williams, L. K. et al. Longevity, growth and community ecology of invasive Poa annua across environmental gradients in the subantarctic. Basic Appl. Ecol. 29, 20–31 (2018).
Google Scholar
Pertierra, L. et al. Eradication of the non-native Poa pratensis colony at Cierva Point, Antarctica: a case study of international cooperation and practical management in an area under multi-party governance. Environ. Sci. Policy 69, 50–56 (2016).
Google Scholar
Hughes, K. A. & Convey, P. The protection of Antarctic terrestrial ecosystems from inter- and intra-continental transfer of non-indigenous species by human activities: a review of current systems and practices. Glob. Environ. Change 20, 96–112 (2010).
Google Scholar
Smith, R. I. L. Introduced plants in Antarctica: potential impacts and conservation issues. Biol. Conserv. 76, 135–146 (1996).
Google Scholar
Thompson, K., Grime, J. P. & Mason, G. Seed germination in response to diurnal fluctuations of temperature. Nature 267, 147–149 (1977).
Google Scholar
McGeoch, M. A. et al. Monitoring biological invasion across the broader Antarctic: a baseline and indicator framework. Glob. Environ. Change 32, 108–125 (2015).
Google Scholar
Kellmann-Sopyła, W. & Giełwanowska, I. Germination capacity of five polar Caryophyllaceae and Poaceae species under different temperature conditions. Polar Biol. 38, 1753–1765 (2015).
Google Scholar
Körner, C. Alpine Treelines: Functional Ecology of the Global High Elevation Tree Limits. 1–220 (2012).
Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2, 453–457 (2012).
Google Scholar
Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).
Google Scholar
Billings, W. D. Constraints to plant growth, reproduction, and establishment in Arctic environments. Arct. Alp. Res. 19, 357–365 (1987).
Google Scholar
Block, W., Smith, R. I. L. & Kennedy, A. D. Strategies of survival and resource exploitation in the Antarctic fellfield ecosystem. Biol. Rev. 84, 449–484 (2009).
Google Scholar
Aerts, R. & Chapin, F. S. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv. Ecol. Res. 30, 1–67 (2000).
Google Scholar
Barrand, N. E. et al. Trends in Antarctic Peninsula surface melting conditions from observations and regional climate modeling. J. Geophys. Res. 118, 315–330 (2013).
Google Scholar
Walton, D. W. H. The Signy Island terrestrial reference sites: XV. Micro-climate monitoring, 1972-1974. Br. Antarct. Surv. Bull. 55, 111–126 (1982).
Smith, R. I. L. Bryophyte oases in Ablation Valleys on Alexander Island, Antarctica. Bryologist 91, 45–50 (1988).
Hunt, H. W., Fountain, A. G., Doran, P. T. & Basagic, H. A dynamic physical model for soil temperature and water in Taylor Valley, Antarctica. Antarct. Sci. 22, 419–434 (2010).
Google Scholar
Bracegirdle, T. J., Barrand, N. E., Kusahara, K. & Wainer, I. Predicting Antarctic climate using climate models. Antarctic Environ. Portal https://doi.org/10.18124/5wq2-0154 (2016).
De Boeck, H. J., De Groote, T. & Nijs, I. Leaf temperatures in glasshouses and open-top chambers. N. Phytol. 194, 1155–1164 (2012).
Google Scholar
Greenspan, S. E. et al. Low-cost fluctuating-temperature chamber for experimental ecology. Methods Ecol. Evolut. 7, 1567–1574 (2016).
Google Scholar
Bokhorst, S. et al. Contrasting survival and physiological responses of sub-Arctic plant types to extreme winter warming and nitrogen. Planta 247, 635–648 (2018).
Google Scholar
Litaor, M. I., Williams, M. & Seastedt, T. R. Topographic controls on snow distribution, soil moisture, and species diversity of herbaceous alpine vegetation, Niwot Ridge, Colorado. J. Geophys. Res. 113 (2008).
Taulavuori, K., Sarala, M. & Taulavuori, E. Growth responses of trees to Arctic light environment. (eds U. Lüttge, W. Beyschlag, B. Büdel, and D. Francis). 157–168. (Springer, Berlin).
Goncharova, O. et al. Influence of snow cover on soil temperatures: meso- and micro-scale topographic effects (a case study from the northern West Siberia discontinuous permafrost zone). Catena 183, 104224 (2019).
Google Scholar
Upson, R., et al. Field Guide to the Introduced Flora of South Georgia. (Royal Botanical Gardens, Kew, 2017).
Allen, S. E. & Heal, O. W. Soils of the Maritime Antarctic zone. (eds M. W. Holdgate). 693–696, (Academic Press, London, 1970).
Bölter, M. Soil development and soil biology on King George Island, Maritime Antarctic. Pol. Polar Res. 32, 105–116 (2011).
Google Scholar
Duffy, G. A. & Lee, J. R. Ice-free area expansion compounds the non-native species threat to Antarctic terrestrial biodiversity. Biol. Conserv. 232, 253–257 (2019).
Google Scholar
Lee, J. R. et al. Climate change drives expansion of Antarctic ice-free habitat. Nature 547, 49–54 (2017).
Google Scholar
Bokhorst, S., Huiskes, A., Convey, P. & Aerts, R. The effect of environmental change on vascular plant and cryptogam communities from the Falkland Islands and the Maritime Antarctic. BMC Ecol. 7, 15 (2007).
Google Scholar
IPCC, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (ed T. F. Stocker, et al.) 1535 (Cambridge, 2013).
Bracegirdle, T. J. et al. Back to the future: using long-term observational and paleo-proxy reconstructions to improve model projections of antarctic climate. Geosciences 9, 255 (2019).
Google Scholar
Royles, J. et al. Carbon isotope evidence for recent climate-related enhancement of CO2 assimilation and peat accumulation rates in Antarctica. Glob. Change Biol. 18, 3112–3124 (2012).
Google Scholar
Tang, M. S. Y. et al. Precipitation instruments at Rothera Station, Antarctic Peninsula: a comparative study. Polar Res. 37, 1503906 (2018).
Google Scholar
Bokhorst, S. et al. Microclimate impacts of passive warming methods in Antarctica: implications for climate change studies. Polar Biol. 34, 1421–1435 (2011).
Google Scholar
Hiltbrunner, E. et al. Ecological consequences of the expansion of N2-fixing plants in cold biomes. Oecologia 176, 11–24 (2014).
Google Scholar
Convey, P., et al. Microclimate data from Anchorage Island, 2001–2009. (2020).
Convey, P., et al. Microclimate data from Coal Nunatak, 2006–2019. (2020).
Convey, P., et al. Microclimate data from Mars Oasis, 2000–2019. (2020).
Moore, D. M. The vascular Flora of the Falkland Islands. Br. Antarct. Surv. Sci. Rep. 60, 4–202 (1968).
Oliva, M. et al. Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere. Sci. Total Environ. 580, 210–223 (2017).
Google Scholar
Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12, 361–371 (2003).
Google Scholar
RCoreTeam, R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, 2015).
Bokhorst, S., Convey, P., Casanova, A. & Aerts, R. Warming impacts on potential germination of non-native plants on the Antarctic Peninsula. https://npdc.nl/dataset/d350edc1-e31e-51b9-aa37-d11365e6bc2b (2020).
Source: Ecology - nature.com