in

White-tailed deer S96 prion protein does not support stable in vitro propagation of most common CWD strains

  • 1.

    Prusiner, S. B. Prions. Proc. Natl. Acad. Sci. USA 95, 13363–13383 (1998).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Caughey, B. & Chesebro, B. Prion protein and the transmissible spongiform encephalopathies. Trends Cell Biol. 7, 56–62 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Manson, J. et al. The prion protein gene: A role in mouse embryogenesis?. Development 115, 117–122 (1992).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Mathiason, C. K. et al. Infectious prions in pre-clinical deer and transmission of chronic wasting disease solely by environmental exposure. PLoS ONE 4, e5916 (2009).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 5.

    Miller, M. W. & Wild, M. A. Epidemiology of chronic wasting disease in captive white-tailed and mule deer. J. Wildl. Dis. 40, 320–327 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Spraker, T. R. et al. Spongiform encephalopathy in free-ranging mule deer (Odocoileus hemionus), white-tailed deer (Odocoileus virginianus) and Rocky Mountain elk (Cervus elaphus nelsoni) in northcentral Colorado. J. Wildl. Dis. 33, 1–6 (1997).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Williams, E. S. & Young, S. Chronic wasting disease of captive mule deer: a spongiform encephalopathy. J. Wildl. Dis. 16, 89–98 (1980).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Belt, P. B. et al. Identification of five allelic variants of the sheep PrP gene and their association with natural scrapie. J. Gen. Virol. 76(Pt 3), 509–517 (1995).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Bossers, A., Schreuder, B. E., Muileman, I. H., Belt, P. B. & Smits, M. A. PrP genotype contributes to determining survival times of sheep with natural scrapie. J. Gen. Virol. 77(Pt 10), 2669–2673 (1996).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Goldmann, W. et al. Two alleles of a neural protein gene linked to scrapie in sheep. Proc. Natl. Acad. Sci. USA 87, 2476–2480 (1990).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Westaway, D. et al. Homozygosity for prion protein alleles encoding glutamine-171 renders sheep susceptible to natural scrapie. Genes Dev. 8, 959–969 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Arnold, M. & Ortiz-Pelaez, A. The evolution of the prevalence of classical scrapie in sheep in Great Britain using surveillance data between 2005 and 2012. Prev. Vet. Med. 117, 242–250 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 13.

    Hagenaars, T. J. et al. Scrapie prevalence in sheep of susceptible genotype is declining in a population subject to breeding for resistance. BMC Vet. Res. 6, 25 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Nodelijk, G. et al. Breeding with resistant rams leads to rapid control of classical scrapie in affected sheep flocks. Vet. Res. 42, 5 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Acutis, P. L. et al. Resistance to classical scrapie in experimentally challenged goats carrying mutation K222 of the prion protein gene. Vet. Res. 43, 8 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Barillet, F. et al. Identification of seven haplotypes of the caprine PrP gene at codons 127, 142, 154, 211, 222 and 240 in French Alpine and Saanen breeds and their association with classical scrapie. J. Gen. Virol. 90, 769–776 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Hazards EPoB et al. Genetic resistance to transmissible spongiform encephalopathies (TSE) in goats. EFSA J. 15, e04962 (2017).

    Google Scholar 

  • 18.

    Sacchi, P. et al. Predicting the impact of selection for scrapie resistance on PRNP genotype frequencies in goats. Vet. Res. 49, 26 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 19.

    Johnson, C. J. et al. Prion protein polymorphisms affect chronic wasting disease progression. PLoS ONE 6, e17450 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Otero, A. et al. Prion protein polymorphisms associated with reduced CWD susceptibility limit peripheral PrP(CWD) deposition in orally infected white-tailed deer. BMC Vet. Res. 15, 50 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Meade-White, K. et al. Resistance to chronic wasting disease in transgenic mice expressing a naturally occurring allelic variant of deer prion protein. J. Virol. 81, 4533–4539 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Race, B., Meade-White, K., Miller, M. W., Fox, K. A. & Chesebro, B. In vivo comparison of chronic wasting disease infectivity from deer with variation at prion protein residue 96. J. Virol. 85, 9235–9238 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Miller, M. W. et al. Survival patterns in white-tailed and mule deer after oral inoculation with a standardized, conspecific prion dose. J. Wildl. Dis. 48, 526–529 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 24.

    Duque Velasquez, C. et al. Chronic wasting disease (CWD) prion strains evolve via adaptive diversification of conformers in hosts expressing prion protein polymorphisms. J. Biol. Chem. 295, 4985–5001 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Duque Velasquez, C. et al. Deer prion proteins modulate the emergence and adaptation of chronic wasting disease strains. J. Virol. 89, 12362–12373 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 26.

    Johnson, C., Johnson, J., Clayton, M., McKenzie, D. & Aiken, J. Prion protein gene heterogeneity in free-ranging white-tailed deer within the chronic wasting disease affected region of Wisconsin. J. Wildl. Dis. 39, 576–581 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Johnson, C. et al. Prion protein polymorphisms in white-tailed deer influence susceptibility to chronic wasting disease. J. Gen. Virol. 87, 2109–2114 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    O’Rourke, K. I. et al. Polymorphisms in the prion precursor functional gene but not the pseudogene are associated with susceptibility to chronic wasting disease in white-tailed deer. J. Gen. Virol. 85, 1339–1346 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 29.

    Keane, D. P. et al. Chronic wasting disease in a Wisconsin white-tailed deer farm. J. Vet. Diagn. Invest. 20, 698–703 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 30.

    Kelly, A. C. et al. Prion sequence polymorphisms and chronic wasting disease resistance in Illinois white-tailed deer (Odocoileus virginianus). Prion 2, 28–36 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Haley, N. J. et al. Estimating relative CWD susceptibility and disease progression in farmed white-tailed deer with rare PRNP alleles. PLoS ONE 14, e0224342 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Wolfe, L. L. et al. PrPCWD in rectal lymphoid tissue of deer (Odocoileus spp.). J. Gen. Virol. 88, 2078–2082 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Haley, N. J. et al. Antemortem detection of chronic wasting disease prions in nasal brush collections and rectal biopsy specimens from white-tailed deer by real-time quaking-induced conversion. J. Clin. Microbiol. 54, 1108–1116 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Angers, R. et al. Structural effects of PrP polymorphisms on intra- and interspecies prion transmission. Proc. Natl. Acad. Sci. USA 111, 11169–11174 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Hannaoui, S. et al. Destabilizing polymorphism in cervid prion protein hydrophobic core determines prion conformation and conversion efficiency. PLoS Pathog. 13, e1006553 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 36.

    Robinson, S. J., Samuel, M. D., Johnson, C. J., Adams, M. & McKenzie, D. I. Emerging prion disease drives host selection in a wildlife population. Ecol. Appl. 22, 1050–1059 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Raymond, G. J. et al. Evidence of a molecular barrier limiting susceptibility of humans, cattle and sheep to chronic wasting disease. EMBO J. 19, 4425–4430 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Boerner, S., Wagenfuhr, K., Daus, M. L., Thomzig, A. & Beekes, M. Towards further reduction and replacement of animal bioassays in prion research by cell and protein misfolding cyclic amplification assays. Lab. Anim. 47, 106–115 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Gonzalez-Montalban, N. et al. Highly efficient protein misfolding cyclic amplification. PLoS Pathog. 7, e1001277 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Makarava, N., Savtchenko, R., Alexeeva, I., Rohwer, R. G. & Baskakov, I. V. Fast and ultrasensitive method for quantitating prion infectivity titre. Nat. Commun. 3, 741 (2012).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 41.

    Moudjou, M. et al. Highly infectious prions generated by a single round of microplate-based protein misfolding cyclic amplification. mBio 5, e00829-13 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 42.

    Angers, R. C. et al. Prion strain mutation determined by prion protein conformational compatibility and primary structure. Science 328, 1154–1158 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Herbst, A., Velasquez, C. D., Triscott, E., Aiken, J. M. & McKenzie, D. Chronic wasting disease prion strain emergence and host range expansion. Emerg. Infect. Dis. 23, 1598–1600 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Pushie, M. J., Shaykhutdinov, R., Nazyrova, A., Graham, C. & Vogel, H. J. An NMR metabolomics study of elk inoculated with chronic wasting disease. J. Toxicol. Environ. Health A 74, 1476–1492 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Castilla, J., Saa, P., Hetz, C. & Soto, C. In vitro generation of infectious scrapie prions. Cell 121, 195–206 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Lyon, A. et al. Application of PMCA to screen for prion infection in a human cell line used to produce biological therapeutics. Sci. Rep. 9, 4847 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 47.

    LaFauci, G. et al. Passage of chronic wasting disease prion into transgenic mice expressing Rocky Mountain elk (Cervus elaphus nelsoni) PrPC. J. Gen. Virol. 87, 3773–3780 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Abrams, J. et al. Human prion disease mortality rates by occurrence of chronic wasting disease in free-ranging cervids, United States. Prion 14, 182–183 (2018).

    Google Scholar 

  • 49.

    Council E. Regulation (EC) No 999/2001 of the European Parliament and of the Council of 22 May 2001 laying down rules for the prevention, control and eradication of certain transmissible spongiform encephalopathies. Off. J. Eur. Union L147 (2001).

  • 50.

    Dawson, M., Hoinville, L. J., Hosie, B. D. & Hunter, N. Guidance on the use of PrP genotyping as an aid to the control of clinical scrapie. Scrapie Information Group. Vet. Rec. 142, 623–625 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • 51.

    Baylis, M. et al. Risk of scrapie in British sheep of different prion protein genotype. J. Gen. Virol. 85, 2735–2740 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 52.

    Hunter, N., Goldmann, W., Smith, G. & Hope, J. The association of a codon 136 PrP gene variant with the occurrence of natural scrapie. Arch. Virol. 137, 171–177 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Saa, P., Castilla, J. & Soto, C. Ultra-efficient replication of infectious prions by automated protein misfolding cyclic amplification. J. Biol. Chem. 281, 35245–35252 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    Johnson, C. J., Aiken, J. M., McKenzie, D., Samuel, M. D. & Pedersen, J. A. Highly efficient amplification of chronic wasting disease agent by protein misfolding cyclic amplification with beads (PMCAb). PLoS ONE 7, e35383 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Safar, J. G. et al. Prion clearance in bigenic mice. J. Gen. Virol. 86, 2913–2923 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 56.

    Safar, J. G. et al. Search for a prion-specific nucleic acid. J. Virol. 79, 10796–10806 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Carroll, J. A., Race, B., Williams, K., Striebel, J. & Chesebro, B. Microglia are critical in host defense against prion disease. J. Virol. 92, e00549–18 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Caplazi, P. A., O’Rourke, K. I. & Baszler, T. V. Resistance to scrapie in PrP ARR/ARQ heterozygous sheep is not caused by preferential allelic use. J. Clin. Pathol. 57, 647–650 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Goldmann, W. PrP genetics in ruminant transmissible spongiform encephalopathies. Vet. Res. 39, 30 (2008).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 60.

    Perrier, V. et al. Dominant-negative inhibition of prion replication in transgenic mice. Proc. Natl. Acad. Sci. USA 99, 13079–13084 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 61.

    Arsac, J. N. et al. Similar biochemical signatures and prion protein genotypes in atypical scrapie and Nor98 cases, France and Norway. Emerg. Infect. Dis. 13, 58–65 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Luhken, G. et al. Epidemiological and genetical differences between classical and atypical scrapie cases. Vet. Res. 38, 65–80 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 63.

    Saunders, G. C., Cawthraw, S., Mountjoy, S. J., Hope, J. & Windl, O. PrP genotypes of atypical scrapie cases in Great Britain. J. Gen. Virol. 87, 3141–3149 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Parental morph combination does not influence innate immune function in nestlings of a colour-polymorphic African raptor

    3Q: The socio-environmental complexities of renewable energy