in

Winter distribution of juvenile and sub-adult male Antarctic fur seals (Arctocephalus gazella) along the western Antarctic Peninsula

  • 1.

    Knox, G. A. Biology of the Southern Ocean (CRC Press, 2006). https://doi.org/10.1201/9781420005134

    Book 

    Google Scholar 

  • 2.

    Thomas, D. N. et al. The Biology of Polar Regions: The Biology of Polar Regions (Oxford University Press, 2008).

    Google Scholar 

  • 3.

    Trathan, P. N. & Hill, S. L. The Importance of Krill Predation in the Southern Ocean. In Biology and Ecology of Antarctic Krill (ed. Siegel, V.) 321–350 (Springer, 2016). https://doi.org/10.1007/978-3-319-29279-3_9.

    Chapter 

    Google Scholar 

  • 4.

    Atkinson, A. et al. Oceanic circumpolar habitats of Antarctic krill. Mar. Ecol. Prog. Ser. 362, 1–23 (2008).

    ADS 
    CAS 

    Google Scholar 

  • 5.

    Siegel, V. & Watkins, J. L. Distribution, biomass and demography of antarctic krill, Euphausia superba. In Biology and Ecology of Antarctic Krill (ed. Siegel, V.) 21–100 (Springer, 2016). https://doi.org/10.1007/978-3-319-29279-3_2.

    Chapter 

    Google Scholar 

  • 6.

    Reiss, C. S. et al. Overwinter habitat selection by Antarctic krill under varying sea-ice conditions: Implications for top predators and fishery management. Mar. Ecol. Prog. Ser. 568, 1–16 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 7.

    Andrews-Goff, V. et al. Humpback whale migrations to Antarctic summer foraging grounds through the southwest Pacific Ocean. Sci. Rep. 8, 12333 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Ribic, C. A., Ainley, D. G. & Fraser, W. R. Habitat selection by marine mammals in the marginal ice zone. Antarct. Sci. 3, 181–186 (1991).

    ADS 

    Google Scholar 

  • 9.

    Takahashi, A. et al. Migratory movements and winter diving activity of Adélie penguins in East Antarctica. Mar. Ecol. Prog. Ser. 589, 227–239 (2018).

    ADS 

    Google Scholar 

  • 10.

    Hückstädt, L. A. et al. Projected shifts in the foraging habitat of crabeater seals along the Antarctic Peninsula. Nat. Clim. Change 10, 472–477 (2020).

    ADS 

    Google Scholar 

  • 11.

    Lowther, A. D., Staniland, I., Lydersen, C. & Kovacs, K. M. Male Antarctic fur seals: Neglected food competitors of bioindicator species in the context of an increasing Antarctic krill fishery. Sci. Rep. 10, 18436 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Forcada, J. & Staniland, I. J. Antarctic fur seal Arctocephalus gazella. In Encyclopedia of Marine Mammals (eds Perrin, W. F. et al.) 36–42 (Academic Press, 2009).

    Google Scholar 

  • 13.

    Boyd, I. L., McCafferty, D. J., Reid, K., Taylor, R. & Walker, T. R. Dispersal of male and female Antarctic fur seals (Arctocephalus gazella). Can. J. Fish. Aquat. Sci. https://doi.org/10.1139/f97-314 (1998).

    Article 

    Google Scholar 

  • 14.

    Cherel, Y., Kernaléguen, L., Richard, P. & Guinet, C. Whisker isotopic signature depicts migration patterns and multi-year intra- and inter-individual foraging strategies in fur seals. Biol. Lett. 5, 830–832 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Kernaléguen, L. et al. Long-term species, sexual and individual variations in foraging strategies of fur seals revealed by stable isotopes in whiskers. PLoS ONE 7, e32916 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Kernaléguen, L., Arnould, J. P. Y., Guinet, C. & Cherel, Y. Determinants of individual foraging specialization in large marine vertebrates, the Antarctic and subantarctic fur seals. J. Anim. Ecol. 84, 1081–1091 (2015).

    PubMed 

    Google Scholar 

  • 17.

    Arthur, B. et al. Winter habitat predictions of a key Southern Ocean predator, the Antarctic fur seal (Arctocephalus gazella). Deep Sea Res. Part II Top. Stud. Oceanogr. 140, 171–181 (2017).

    ADS 

    Google Scholar 

  • 18.

    Arthur, B. et al. Managing for change: Using vertebrate at sea habitat use to direct management efforts. Ecol. Indic. 91, 338–349 (2018).

    Google Scholar 

  • 19.

    Reisinger, R. R. et al. Habitat modelling of tracking data from multiple marine predators identifies important areas in the Southern Indian Ocean. Divers. Distrib. 24, 535–550 (2018).

    MathSciNet 

    Google Scholar 

  • 20.

    Wege, M., de Bruyn, P. J. N., Hindell, M. A., Lea, M.-A. & Bester, M. N. Preferred, small-scale foraging areas of two Southern Ocean fur seal species are not determined by habitat characteristics. BMC Ecol. 19, 36 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Jones, K. A. et al. Intra-specific niche partitioning in antarctic fur seals, Arctocephalus gazella. Sci. Rep. 10, 3238 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Siniff, D. B., Garrott, R. A., Rotella, J. J., Fraser, W. R. & Ainley, D. G. Opinion: Projecting the effects of environmental change on Antarctic seals. Antarct. Sci. 20, 425–435 (2008).

    ADS 

    Google Scholar 

  • 23.

    Raymond, B. et al. Important marine habitat off east Antarctica revealed by two decades of multi-species predator tracking. Ecography 38, 121–129 (2015).

    Google Scholar 

  • 24.

    Bestley, S., Jonsen, I. D., Hindell, M. A., Harcourt, R. G. & Gales, N. J. Taking animal tracking to new depths: Synthesizing horizontal–vertical movement relationships for four marine predators. Ecology 96, 417–427 (2015).

    PubMed 

    Google Scholar 

  • 25.

    Kernaléguen, L. et al. Early-life sexual segregation: Ontogeny of isotopic niche differentiation in the Antarctic fur seal. Sci. Rep. 6, 33211 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Payne, M. R. Growth in the Antarctic fur seal Arctocephalus gazella. J. Zool. 187, 1–20 (1979).

    Google Scholar 

  • 27.

    Costa, D., Goebel, M. E. & Sterling, J. T. Foraging energetics and diving behavior of the Antarctic fur seal, Arctocephalus gazzella at Cape Shirreff, Livingston Island. In Antarctic Ecosystems: Models for Wider Ecological Understanding (eds Davision, W. et al.) 77–84 (New Zealand Natural Science Press, 2000).

    Google Scholar 

  • 28.

    Staniland, I. J. et al. Geographical variation in the behaviour of a central place forager: Antarctic fur seals foraging in contrasting environments. Mar. Biol. 157, 2383–2396 (2010).

    Google Scholar 

  • 29.

    Blanchet, M.-A. et al. At-sea behaviour of three krill predators breeding at Bouvetøya—Antarctic fur seals, macaroni penguins and chinstrap penguins. Mar. Ecol. Prog. Ser. 477, 285–302 (2013).

    ADS 

    Google Scholar 

  • 30.

    Jeanniard-du-Dot, T., Trites, A. W., Arnould, J. P. Y. & Guinet, C. Reproductive success is energetically linked to foraging efficiency in Antarctic fur seals. PLoS ONE 12, e0174001 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Favilla, A. B. & Costa, D. P. Thermoregulatory strategies of diving air-breathing marine vertebrates: A review. Front. Ecol. Evol. 8, 292 (2020).

    Google Scholar 

  • 32.

    Staniland, I. J. & Robinson, S. L. Segregation between the sexes: Antarctic fur seals, Arctocephalus gazella, foraging at South Georgia. Anim. Behav. 75, 1581–1590 (2008).

    Google Scholar 

  • 33.

    Reid, K. The diet of Antarctic fur seals (Arctocephalus gazella Peters 1875) during winter at South Georgia. Antarct. Sci. 7, 241–249 (1995).

    ADS 

    Google Scholar 

  • 34.

    Kirkman, S. P., Wilson, W., Klages, N. T. W., Bester, M. N. & Isaksen, K. Diet and estimated food consumption of Antarctic fur seals at Bouvetøya during summer. Polar Biol. 23, 745–752 (2000).

    Google Scholar 

  • 35.

    Casaux, R., Baroni, A., Arrighetti, F., Ramón, A. & Carlini, A. Geographical variation in the diet of the Antarctic fur seal Arctocephalus gazella. Polar Biol. 26, 753–758 (2003).

    Google Scholar 

  • 36.

    Casaux, R., Baroni, A. & Ramón, A. Diet of Antarctic fur seals Arctocephalus gazella at the Danco Coast, Antarctic Peninsula. Polar Biol. 26, 49–54 (2003).

    Google Scholar 

  • 37.

    Davis, D., Staniland, I. J. & Reid, K. Spatial and temporal variability in the fish diet of Antarctic fur seal (Arctocephalus gazella) in the Atlantic sector of the Southern Ocean. Can. J. Zool. https://doi.org/10.1139/z06-071 (2006).

    Article 

    Google Scholar 

  • 38.

    Casaux, R., Juares, M., Carlini, A. & Corbalán, A. The diet of the Antarctic fur seal Arctocephalus gazella at the South Orkney Islands in ten consecutive years. Polar Biol. 39, 1197–1206 (2016).

    Google Scholar 

  • 39.

    Tarroux, A., Lowther, A. D., Lydersen, C. & Kovacs, K. M. Temporal shift in the isotopic niche of female Antarctic fur seals from Bouvetøya. Polar Res. 35, 31335 (2016).

    Google Scholar 

  • 40.

    Garcia-Garin, O. et al. No evidence of microplastics in Antarctic fur seal scats from a hotspot of human activity in Western Antarctica. Sci. Total Environ. 737, 140210 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Boyd, I. L. Estimating food consumption of marine predators: Antarctic fur seals and macaroni penguins. J. Appl. Ecol. 39, 103–119 (2002).

    Google Scholar 

  • 42.

    Wilson, D. E. & Mittermeier, R. A. Handbook of the mammals of the world : vol. 4 : Sea mammals. (2014).

  • 43.

    Melin, S. R. et al. Reversible immobilization of free-ranging adult male California sea lions (Zalophus californianus). Mar. Mammal Sci. 29, E529–E536 (2013).

    Google Scholar 

  • 44.

    Pussini, N. & Goebel, M. E. A safer protocol for field immobilization of leopard seals (Hydrurga leptonyx). Mar. Mammal Sci. 31, 1549–1558 (2015).

    Google Scholar 

  • 45.

    Spelman, L. H. Reversible anesthesia of captive California sea lions (Zalophus californianus) with medetomidine, midazolam, butorphanol, and isoflurane. J. Zoo Wildl. Med. Off. Publ. Am. Assoc. Zoo Vet. 35, 65–69 (2004).

    Google Scholar 

  • 46.

    Cook, T. A. Butorphanol tartrate: An intravenous analgesic for outpatient surgery. Otolaryngol. Head Neck Surg. J. Am. Acad. Otolaryngol. Head Nexk Surg. 91, 251–254 (1983).

    CAS 

    Google Scholar 

  • 47.

    Ropert-Coudert, Y. et al. The retrospective analysis of Antarctic tracking data project. Sci. Data 7, 94 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Freitas, C., Lydersen, C., Fedak, M. A. & Kovacs, K. M. A simple new algorithm to filter marine mammal Argos locations. Mar. Mammal Sci. 24, 315–325 (2008).

    Google Scholar 

  • 49.

    Bonadonna, F., Lea, M.-A., Dehorter, O. & Guinet, C. Foraging ground fidelity and route-choice tactics of a marine predator: The Antarctic fur seal Arctocephalus gazella. Mar. Ecol. Prog. Ser. 223, 287–297 (2001).

    ADS 

    Google Scholar 

  • 50.

    Lea, M.-A. & Dubroca, L. Fine-scale linkages between the diving behaviour of Antarctic fur seals and oceanographic features in the southern Indian Ocean. ICES J. Mar. Sci. 60, 990–1002 (2003).

    Google Scholar 

  • 51.

    Jonsen, I. D. et al. Movement responses to environment: Fast inference of variation among southern elephant seals with a mixed effects model. Ecology 100, e02566 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Jonsen, I. D. et al. A continuous-time state-space model for rapid quality control of argos locations from animal-borne tags. Mov. Ecol. 8, 31 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Hazen, E. L. et al. Where did they not go? Considerations for generating pseudo-absences for telemetry-based habitat models. Mov. Ecol. 9, 5 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    O’Toole, M., Queiroz, N., Humphries, N. E., Sims, D. W. & Sequeira, A. M. M. Quantifying effects of tracking data bias on species distribution models. Methods Ecol. Evol. 12, 170–181 (2021).

    Google Scholar 

  • 55.

    Lee, J. F., Friedlaender, A. S., Oliver, M. J. & DeLiberty, T. L. Behavior of satellite-tracked Antarctic minke whales (Balaenoptera bonaerensis) in relation to environmental factors around the western Antarctic Peninsula. Anim. Biotelemetry 5, 23 (2017).

    Google Scholar 

  • 56.

    Labrousse, S. et al. Under the sea ice: Exploring the relationship between sea ice and the foraging behaviour of southern elephant seals in East Antarctica. Prog. Oceanogr. 156, 17–40 (2017).

    ADS 

    Google Scholar 

  • 57.

    Hazen, E. L. et al. A dynamic ocean management tool to reduce bycatch and support sustainable fisheries. Sci. Adv. 4, eaar3001 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Hindell, M. A. et al. Tracking of marine predators to protect Southern Ocean ecosystems. Nature 580, 87–92 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 59.

    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338 (2012).

    Google Scholar 

  • 60.

    Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).

    Google Scholar 

  • 61.

    Hijmans, R. J., Phillips, S. & Elith, J. L. dismo: Species Distribution Modeling. (2020).

  • 62.

    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 63.

    Roberts, D. R. et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).

    Google Scholar 

  • 64.

    Scales, K. L. et al. Fit to predict? Eco-informatics for predicting the catchability of a pelagic fish in near real time. Ecol. Appl. 27, 2313–2329 (2017).

    PubMed 

    Google Scholar 

  • 65.

    Pya, N. & Wood, S. N. Shape constrained additive models. Stat. Comput. 25, 543–559 (2015).

    MathSciNet 
    MATH 

    Google Scholar 

  • 66.

    R Core Team. R: A Language and Environment for Statistical Computing. (2019).

  • 67.

    Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9, 142–147 (2019).

    ADS 

    Google Scholar 

  • 68.

    Brodie, S. et al. Integrating dynamic subsurface habitat metrics into species distribution models. Front. Mar. Sci. (2018).

  • 69.

    Becker, E. A. et al. Moving Towards dynamic ocean management: How well do modeled ocean products predict species distributions?. Remote Sens. 8, 149 (2016).

    ADS 

    Google Scholar 

  • 70.

    Lellouche, J.-M. et al. Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1∕12° high-resolution system. Ocean Sci. 14, 1093–1126 (2018).

    ADS 

    Google Scholar 

  • 71.

    Handcock, M. S. & Raphael, M. N. Modeling the annual cycle of daily Antarctic sea ice extent. Cryosphere 14, 2159–2172 (2020).

    ADS 

    Google Scholar 

  • 72.

    Smith, G. C. et al. Polar ocean observations: A critical gap in the observing system and its effect on environmental predictions from hours to a season. Front. Mar. Sci. (2019).

  • 73.

    March, D., Boehme, L., Tintoré, J., Vélez-Belchi, P. J. & Godley, B. J. Towards the integration of animal-borne instruments into global ocean observing systems. Glob. Change Biol. 26, 586–596 (2020).

    ADS 

    Google Scholar 

  • 74.

    Santora, J. A. Dynamic intra-seasonal habitat use by Antarctic fur seals suggests migratory hotspots near the Antarctic Peninsula. Mar. Biol. 160, 1383–1393 (2013).

    Google Scholar 

  • 75.

    Vergani, D. F. & Coria, N. R. Increase in numbers of male fur seals Arctocephalus gazella during the summer autumn period at Mossman Peninsula (Laurie Island). Polar Biol. 9, 487–488 (1989).

    Google Scholar 

  • 76.

    Rutishauser, M. R., Costa, D. P., Goebel, M. E. & Williams, T. M. Ecological implications of body composition and thermal capabilities in young antarctic fur seals (Arctocephalus gazella). Physiol. Biochem. Zool. PBZ 77, 669–681 (2004).

    PubMed 

    Google Scholar 

  • 77.

    Vales, D. G., Cardona, L., García, N. A., Zenteno, L. & Crespo, E. A. Ontogenetic dietary changes in male South American fur seals Arctocephalus australis in Patagonia. Mar. Ecol. Prog. Ser. 525, 245–260 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 78.

    Cardona, L., Vales, D., Aguilar, A., Crespo, E. & Zenteno, L. Temporal variability in stable isotope ratios of C and N in the vibrissa of captive and wild adult South American sea lions Otaria byronia: More than just diet shifts. Mar. Mammal Sci. 33, 975–990 (2017).

    CAS 

    Google Scholar 

  • 79.

    Costa, D. P., Gales, N. J. & Goebel, M. E. Aerobic dive limit: How often does it occur in nature?. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 129, 771–783 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 80.

    Biuw, M., Krafft, B. A., Hofmeyr, G. J. G., Lydersen, C. & Kovacs, K. M. Time budgets and at-sea behaviour of lactating female Antarctic fur seals Arctocephalus gazella at Bouvetøya. Mar. Ecol. Prog. Ser. 385, 271–284 (2009).

    ADS 

    Google Scholar 

  • 81.

    Lascara, C. M., Hofmann, E. E., Ross, R. M. & Quetin, L. B. Seasonal variability in the distribution of Antarctic krill, Euphausia superba, west of the Antarctic Peninsula. Deep Sea Res. Part Oceanogr. Res. Pap. 46, 951–984 (1999).

    ADS 

    Google Scholar 

  • 82.

    Lea, M.-A., Hindell, M., Guinet, C. & Goldsworthy, S. Variability in the diving activity of Antarctic fur seals, Arctocephalus gazella, at Iles Kerguelen. Polar Biol. 25, 269–279 (2002).

    Google Scholar 

  • 83.

    Vaughan, D. G. et al. Recent rapid regional climate warming on the antarctic peninsula. Clim. Change 60, 243–274 (2003).

    Google Scholar 

  • 84.

    Forcada, J., Trathan, P. N., Reid, K. & Murphy, E. J. The effects of global climate variability in pup production of antarctic fur seals. Ecology 86, 2408–2417 (2005).

    Google Scholar 

  • 85.

    Forcada, J. & Hoffman, J. I. Climate change selects for heterozygosity in a declining fur seal population. Nature 511, 462–465 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 86.

    Schwarz, L. K., Goebel, M. E., Costa, D. P. & Kilpatrick, A. M. Top-down and bottom-up influences on demographic rates of Antarctic fur seals Arctocephalus gazella. J. Anim. Ecol. 82, 903–911 (2013).

    PubMed 

    Google Scholar 

  • 87.

    Hoffman, J. I. & Forcada, J. Extreme natal philopatry in female Antarctic fur seals (Arctocephalus gazella). Mamm. Biol. 77, 71–73 (2012).

    Google Scholar 

  • 88.

    Hucke-Gaete, R., Osman, L. P., Moreno, C. A. & Torres, D. Examining natural population growth from near extinction: The case of the Antarctic fur seal at the South Shetlands, Antarctica. Polar Biol. 27, 304–311 (2004).

    Google Scholar 

  • Raised seasonal temperatures reinforce autumn Varroa destructor infestation in honey bee colonies

    Lion and spotted hyena distributions within a buffer area of the Serengeti-Mara ecosystem