in

Zooplankton carcasses stimulate microbial turnover of allochthonous particulate organic matter

  • 1.

    Chen M, Zeng G, Zhang J, Xu P, Chen A, Lu L. Global landscape of total organic carbon, nitrogen and phosphorus in lake water. Sci Rep. 2015;5:15043.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Toming K, Kotta J, Uuemaa E, Sobek S, Kutser T, Tranvik LJ. Predicting lake dissolved organic carbon at a global scale. Sci Rep. 2020;10:8471.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr. 2009;54:2298–314.

    CAS  Article  Google Scholar 

  • 4.

    Tranvik LJ, Cole JJ, Prairie YT. The study of carbon in inland waters-from isolated ecosystems to players in the global carbon cycle. Limnol Oceanogr Lett. 2018;3:41–48.

    Article  Google Scholar 

  • 5.

    Jaffé R, McKnight D, Maie N, Cory R, McDowell WH, Campbell JL. Spatial and temporal variations in DOM composition in ecosystems: the importance of long-term monitoring of optical properties. J Geophys Res Biogeosci. 2008;113:G04032.

    Article  CAS  Google Scholar 

  • 6.

    Crump BC, Kling GW, Bahr M, Hobbie JE. Bacterioplankton community shifts in an Arctic Lake correlate with seasonal changes in organic matter source. Appl Environ Microbiol. 2003;69:2253–68.

    PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Fasching C, Behounek B, Singer GA, Battin TJ. Microbial degradation of terrigenous dissolved organic matter and potential consequences for carbon cycling in brown-water streams. Sci Rep. 2014;4:4981.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Yakimovich KM, Emilson EJS, Carson MA, Tanentzap AJ, Basiliko N, Mykytczuk NCS. Plant litter type dictates microbial communities responsible for greenhouse gas production in amended lake sediments. Front Microbiol. 2018;9:2662.

    PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Attermeyer K, Hornick T, Kayler ZE, Bahr A, Zwirnmann E, Grossart HP, et al. Enhanced bacterial decomposition with increasing addition of autochthonous to allochthonous carbon without any effect on bacterial community composition. Biogeosciences. 2014;11:1479–89.

    Article  Google Scholar 

  • 10.

    Fabian J, Zlatanovic S, Mutz M, Premke K. Fungal-bacterial dynamics and their contribution to terrigenous carbon turnover in relation to organic matter quality. ISME J. 2017;11:415–25.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Quigley LNM, Edwards A, Steen AD, Buchan A. Characterization of the interactive effects of labile and recalcitrant organic matter on microbial growth and metabolism. Front Microbiol. 2019;10:493.

    PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Tranvik LJ. Degradation of dissolved organic matter in humic waters by bacteria. In: Hessen DOTLJ, editor. Aquatic Humic Substances. Berlin, Heidelberg: Springer; 1998.

  • 13.

    Søndergaard M, Borch NH, Riemann B. Dynamics of biodegradable DOC produced by freshwater plankton communities. Aquat Micro Ecol. 2000;23:73–83.

    Article  Google Scholar 

  • 14.

    Berg B, McClaugherty C. Initial litter chemical composition. Plant Litter. 2014;3:53–83.

    Article  Google Scholar 

  • 15.

    Bugg TD, Ahmad M, Hardiman EM, Rahmanpour R. Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep. 2011;28:1883–96.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Klotzbücher T, Kaiser K, Guggenberger G, Gatzek C, Kalbitz K. A new conceptual model for the fate of lignin in decomposing plant litter. Ecology. 2011;92:1052–62.

    PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Grey J, Jones RI, Sleep D. Seasonal changes in the importance of the source of organic matter to the diet of zooplankton in Loch Ness, as indicated by stable isotope analysis. Limnol Oceanogr. 2001;46:505–13.

    Article  Google Scholar 

  • 18.

    Cole JJ, Carpenter SR, Kitchell JF, Pace ML. Pathways of organic carbon utilization in small lakes: results from a whole-lake 13C addition and coupled model. Limnol Oceanogr. 2002;47:1664–75.

    CAS  Article  Google Scholar 

  • 19.

    Guenet B, Danger M, Abbadie L, Lacroix G. Priming effect: bridging the gap between terrestrial and aquatic ecology. Ecology. 2010;91:2850–61.

    PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Bianchi TS. The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proc Natl Acad Sci USA. 2011;108:19473–81.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Bengtsson MM, Attermeyer K, Catalán N. Interactive effects on organic matter processing from soils to the ocean: are priming effects relevant in aquatic ecosystems? Hydrobiologia. 2018;822:1–17.

    CAS  Article  Google Scholar 

  • 22.

    Kuzyakov Y, Friedel JK, Stahr K. Review of mechanisms and quantification of priming effects. Soil Biol Biochem. 2000;32:1485–98.

    CAS  Article  Google Scholar 

  • 23.

    Bianchi TS, Ward ND. Editorial: the role of priming in terrestrial and aquatic ecosystems. Front Earth Sci. 2019;7:321.

    Article  Google Scholar 

  • 24.

    Halvorson HM, Francoeur SN, Findlay RH, Kuehn KA. Algal-mediated priming effects on the ecological stoichiometry of leaf litter decomposition: a meta-analysis. Front Earth Sci. 2019;7:76.

    Article  Google Scholar 

  • 25.

    Kayler ZE, Premke K, Gessler A, Gessner MO, Griebler C, Hilt S, et al. Integrating aquatic and terrestrial perspectives to improve insights into organic matter cycling at the landscape scale. Front Earth Sci. 2019;7:127.

    Article  Google Scholar 

  • 26.

    Danger M, Cornut J, Chauvet E, Chavez P, Elger A, Lecerf A. Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect? Ecology. 2013;94:1604–13.

    PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Guenet B, Danger M, Harrault L, Allard B, Jauset-Alcala M, Bardoux G, et al. Fast mineralization of land-born C in inland waters: first experimental evidences of aquatic priming effect. Hydrobiologia. 2013;721:35–44.

    Article  CAS  Google Scholar 

  • 28.

    Ward ND, Sawakuchi HO, Richey JE, Keil RG, Bianchi TS. Enhanced aquatic respiration associated with mixing of clearwater tributary and turbid Amazon river waters. Front Earth Sci. 2019;7:101.

    Article  Google Scholar 

  • 29.

    Bianchi TS, Thornton DCO, Yvon-Lewis SA, King GM, Eglinton TI, Shields MR, et al. Positive priming of terrestrially derived dissolved organic matter in a freshwater microcosm system. Geophys Res Lett. 2015;42:5460–67.

    CAS  Article  Google Scholar 

  • 30.

    Tang KW, Gladyshev MI, Dubovskaya OP, Kirillin G, Grossart H-P. Zooplankton carcasses and non-predatory mortality in freshwater and inland sea environments. J Plankton Res. 2014;36:597–612.

    CAS  Article  Google Scholar 

  • 31.

    Cauchie HM, Jaspar-Versali MF, Hoffmann L, Thomé JP. Analysis of the seasonal variation in biochemical composition of Daphnia magna Straus (Crustacea: Branchiopoda: Anomopoda) from an aerated wastewater stabilisation pond. Ann Limnol. 1999;35:223–31.

    Article  Google Scholar 

  • 32.

    Smirnov NN. Physiology of the Cladocera, 2nd ed., London, Academic Press: Elsevier; 2017.

  • 33.

    Dubovskaya OP, Tang KW, Gladyshev MI, Kirillin G, Buseva Z, Kasprzak P, et al. Estimating in situ zooplankton non-predation mortality in an oligo-mesotrophic lake from sediment trap data: caveats and reality check. PLoS ONE. 2015;10:e0131431.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 34.

    Kirillin G, Grossart H-P, Tang KW. Modeling sinking rate of zooplankton carcasses: effects of stratification and mixing. Limnol Oceanogr. 2012;57:881–94.

    Article  Google Scholar 

  • 35.

    Tang KW, Hutalle KML, Grossart HP. Microbial abundance, composition and enzymatic activity during decomposition of copepod carcasses. Aquat Micro Ecol. 2006;45:219–27.

    Article  Google Scholar 

  • 36.

    Tang KW, Bickel SL, Dziallas C, Grossart HP. Microbial activities accompanying decomposition of cladoceran and copepod carcasses under different environmental conditions. Aquat Micro Ecol. 2009;57:89–100.

    Article  Google Scholar 

  • 37.

    Kolmakova OV, Gladyshev MI, Fonvielle JA, Ganzert L, Hornick T, Grossart HP. Effects of zooplankton carcasses degradation on freshwater bacterial community composition and implications for carbon cycling. Environ Microbiol. 2019;21:34–49.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Corno G, Salka I, Pohlmann K, Hall AR, Grossart HP. Interspecific interactions drive chitin and cellulose degradation by aquatic microorganisms. Aquat Micro Ecol. 2015;76:27–37.

    Article  Google Scholar 

  • 39.

    Masigol H, Khodaparast SA, Woodhouse JN, Rojas‐Jimenez K, Fonvielle J, Rezakhani F, et al. The contrasting roles of aquatic fungi and oomycetes in the degradation and transformation of polymeric organic matter. Limnol Oceanogr. 2019;64:2662–78.

    CAS  Article  Google Scholar 

  • 40.

    Gessner MO, Chauvet E. Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology. 1994;75:1807–17.

    Article  Google Scholar 

  • 41.

    Grossart HP, Van den Wyngaert S, Kagami M, Wurzbacher C, Cunliffe M, Rojas-Jimenez K. Fungi in aquatic ecosystems. Nat Rev Microbiol. 2019;17:339–54.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Osono T. Functional diversity of ligninolytic fungi associated with leaf litter decomposition. Ecol Res. 2019;35:30–43.

    Article  CAS  Google Scholar 

  • 43.

    Taube R, Ganzert L, Grossart HP, Gleixner G, Premke K. Organic matter quality structures benthic fatty acid patterns and the abundance of fungi and bacteria in temperate lakes. Sci Total Environ. 2018;610-611:469–81.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Cragg SM, Beckham GT, Bruce NC, Bugg TD, Distel DL, Dupree P, et al. Lignocellulose degradation mechanisms across the Tree of Life. Curr Opin Chem Biol. 2015;29:108–19.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Wilhelm RC, Singh R, Eltis LD, Mohn WW. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J. 2019;13:413–29.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Kuikman PJ, Jansen AG, van Veen JA, Zehnder AJB. Protozoan predation and the turnover of soil organic carbon and nitrogen in the presence of plants. Biol Fertil Soils. 1990;10:22–28.

    CAS  Article  Google Scholar 

  • 47.

    White DC, Davis WM, Nickels JS, King JD, Bobbie RJ. Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia. 1979;40:51–62.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Romaní AM, Fischer H, Mille-Lindblom C, Tranvik LJ. Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. Ecology. 2006;87:2559–69.

    PubMed  Article  PubMed Central  Google Scholar 

  • 49.

    Hutalle-Schmelzer KM, Zwirnmann E, Kruger A, Grossart HP. Changes in pelagic bacteria communities due to leaf litter addition. Micro Ecol. 2010;60:462–75.

    Article  Google Scholar 

  • 50.

    Smith EJ, Davison W, Hamilton-Taylor J. Methods for preparing synthetic freshwaters. Water Res. 2002;36:1286–96.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Attermeyer K, Premke K, Hornick T, Hilt S, Grossart HP. Ecosystem-level studies of terrestrial carbon reveal contrasting bacterial metabolism in different aquatic habitats. Ecology. 2013;94:2754–66.

    PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    Halbedel S (2015) Protocol for CO2 sampling in waters by the use of the headspaceequilibration technique, based on the simple gas equation; second update. Protoc Exch. https://assets.researchsquare.com/files/nprot-4275/v1/manuscript.pdf

  • 53.

    Cheng W. Measurement of rhizosphere respiration and organic matter decomposition using natural 13C. Plant Soil. 1996;183:263–68.

    CAS  Article  Google Scholar 

  • 54.

    Taube R, Fabian J, Van den Wyngaert S, Agha R, Baschien C, Gerphagnon M, et al. Potentials and limitations of quantification of fungi in freshwater environments based on PLFA profiles. Fungal Ecol. 2019;41:256–68.

    Article  Google Scholar 

  • 55.

    Zhang Z, Qu Y, Li S, Feng K, Wang S, Cai W, et al. Soil bacterial quantification approaches coupling with relative abundances reflecting the changes of taxa. Sci Rep. 2017;7:4837.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 56.

    Mangelsdorf K, Karger C, Zink K-G. Phospholipids as life markers in geological habitats. Hydrocarbons, oils and lipids: diversity, origin, chemistry and fate. 2019. pp. 1–29.

  • 57.

    Frostegård Å, Tunlid A, Bååth E. Microbial biomass measured as total lipid phosphate in soils of different organic content. J Microbiol Methods. 1991;14:151–63.

    Article  Google Scholar 

  • 58.

    Nercessian O, Noyes E, Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L. Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. Appl Environ Microbiol. 2005;71:6885–99.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Tedersoo L, Anslan S, Bahram M, Põlme S, Riit T, Liiv I, et al. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys. 2015;10:1–43.

    Article  Google Scholar 

  • 61.

    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    Murali A, Bhargava A, Wright ES. IDTAXA: a novel approach for accurate taxonomic classification of microbiome sequences. Microbiome. 2018;6:140.

    PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    De Caceres M, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90:3566–74.

    PubMed  Article  PubMed Central  Google Scholar 

  • 64.

    Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 2008;9:559.

    Article  CAS  Google Scholar 

  • 65.

    Taipale SJ, Kainz MJ, Brett MT. Diet-switching experiments show rapid accumulation and preferential retention of highly unsaturated fatty acids in Daphnia. Oikos. 2011;120:1674–82.

    Article  Google Scholar 

  • 66.

    Corno G, Jurgens K. Structural and functional patterns of bacterial communities in response to protist predation along an experimental productivity gradient. Environ Microbiol. 2008;10:2857–71.

    PubMed  Article  PubMed Central  Google Scholar 

  • 67.

    Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 2012;6:1007–17.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 68.

    Song HK, Song W, Kim M, Tripathi BM, Kim H, Jablonski P, et al. Bacterial strategies along nutrient and time gradients, revealed by metagenomic analysis of laboratory microcosms. FEMS Microbiol Ecol. 2017;93:fix114.

    Article  CAS  Google Scholar 

  • 69.

    Bardgett RD, Kandeler E, Tscherko D, Hobbs PJ, Bezemer TM, Jones TH, et al. Below-ground microbial community development in a high temperature world. Oikos. 1999;85:193–203.

    Article  Google Scholar 

  • 70.

    Hammel KE, Kapich AN, Jensen KA, Ryan ZC. Reactive oxygen species as agents of wood decay by fungi. Enzym Micro Technol. 2002;30:445–53.

    CAS  Article  Google Scholar 

  • 71.

    Rojas-Jimenez K, Fonvielle JA, Ma H, Grossart H-P. Transformation of humic substances by the freshwater Ascomycete Cladosporium sp. Limnol Oceanogr. 2017;62:1955–62.

    CAS  Article  Google Scholar 

  • 72.

    Nierman WC, Feldblyum TV, Laub MT, Paulsen IT, Nelson KE, Eisen JA, et al. Complete genome sequence of Caulobacter crescentus. Proc Natl Acad Sci USA. 2001;98:4136–41.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 73.

    Zheng W, Lehmann A, Ryo M, Valyi KK, Rillig MC. Growth rate trades off with enzymatic investment in soil filamentous fungi. Sci Rep. 2020;10:11013.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 74.

    Bärlocher F, Boddy L. Aquatic fungal ecology—How does it differ from terrestrial? Fungal Ecol. 2016;19:5–13.

    Article  Google Scholar 

  • 75.

    Lange L, Barrett K, Pilgaard B, Gleason F, Tsang A. Enzymes of early-diverging, zoosporic fungi. Appl Microbiol Biotechnol. 2019;103:6885–902.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 76.

    Janusz G, Pawlik A, Swiderska-Burek U, Polak J, Sulej J, Jarosz-Wilkolazka A, et al. Laccase properties, physiological functions, and evolution. Int J Mol Sci. 2020;21:966.

    CAS  PubMed Central  Article  Google Scholar 

  • 77.

    Catalán N, Kellerman AM, Peter H, Carmona F, Tranvik LJ. Absence of a priming effect on dissolved organic carbon degradation in lake water. Limnol Oceanogr. 2015;60:159–68.

    Article  Google Scholar 

  • 78.

    Bengtsson MM, Wagner K, Burns NR, Herberg ER, Wanek W, Kaplan LA, et al. No evidence of aquatic priming effects in hyporheic zone microcosms. Sci Rep. 2014;4:5187.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 79.

    Tanentzap AJ, Fitch A, Orland C, Emilson EJS, Yakimovich KM, Osterholz H, et al. Chemical and microbial diversity covary in fresh water to influence ecosystem functioning. Proc Natl Acad Sci USA. 2019;116:24689–95.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 80.

    Orland C, Emilson EJS, Basiliko N, Mykytczuk NCS, Gunn JM, Tanentzap AJ. Microbiome functioning depends on individual and interactive effects of the environment and community structure. ISME J. 2019;13:1–11.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 81.

    Winder M, Sommer U. Phytoplankton response to a changing climate. Hydrobiologia. 2012;698:5–16.

    Article  Google Scholar 

  • 82.

    Pothoven SA, Fahnenstiel GL. Spatial and temporal trends in zooplankton assemblages along a nearshore to offshore transect in southeastern Lake Michigan from 2007 to 2012. J Gt Lakes Res. 2015;41:95–103.

    Article  Google Scholar 

  • 83.

    Selmeczy GB, Abonyi A, Krienitz L, Kasprzak P, Casper P, Telcs A, et al. Old sins have long shadows: climate change weakens efficiency of trophic coupling of phyto- and zooplankton in a deep oligo-mesotrophic lowland lake (Stechlin, Germany)—a causality analysis. Hydrobiologia. 2018;831:101–17.

    Article  CAS  Google Scholar 


  • Source: Ecology - nature.com

    The sources of variation for individual prey-to-predator size ratios

    Alteration of coastal productivity and artisanal fisheries interact to affect a marine food web