Isaak, D. J., Young, M. K., Nagel, D. E., Horan, D. L. & Groce, M. C. The cold-water climate shield: delineating refugia for preserving salmonid fishes through the 21st century. Glob. Change Biol. 21, 2540–2553 (2015).
Tabor, K. & Williams, J. W. Globally downscaled climate projections for assessing the conservation impacts of climate change. Ecol. Appl. 20, 554–565 (2010).
Small-Lorenz, S. L., Culp, L. A., Ryder, T. B., Will, T. C. & Marra, P. P. A blind spot in climate change vulnerability assessments. Nat. Clim. Change 3, 91–93 (2013).
Runge, C. A., Martin, T. G., Possingham, H. P., Willis, S. G. & Fuller, R. A. Conserving mobile species. Front. Ecol. Environ. 12, 395–402 (2014).
Sears, M. W., Raskin, E. & Angilletta, M. J. The world is not flat: defining relevant thermal landscapes in the context of climate change. Integr. Comp. Biol. 51, 666–675 (2011).
Ebersole, J. L., Liss, W. J. & Frissell, C. A. Thermal heterogeneity, stream channel morphology, and salmonid abundance in northeastern Oregon streams. Can. J. Fish. Aquat. Sci. https://doi.org/10.1139/f03-107 (2011).
Baldock, J. R., Armstrong, J. B., Schindler, D. E. & Carter, J. L. Juvenile coho salmon track a seasonally shifting thermal mosaic across a river floodplain. Freshw. Biol. 61, 1454–1465 (2016).
Google Scholar
Armstrong, J. B. & Schindler, D. E. Going with the flow: spatial distributions of juvenile coho salmon track an annually shifting mosaic of water temperature. Ecosystems 16, 1429–1441 (2013).
Google Scholar
Wurtsbaugh, W. A. & Neverman, D. Post-feeding thermotaxis and daily vertical migration in a larval fish. Nature 333, 846–848 (1988).
Thompson, L. M., Staudinger, M. D. & Carter, S. L. Summarizing Components of US Department of the Interior Vulnerability Assessments to Focus Climate Adaptation Planning Open-File Report 2015–1110 (US Geological Survey, 2015).
Bottrill, M. C. et al. Is conservation triage just smart decision making? Trends Ecol. Evol. 23, 649–654 (2008).
Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–224 (2015).
Brady, M. E., Chione, A. M. & Armstrong, J. B. Missing pieces in the full annual cycle of fish ecology: a systematic review of the phenology of freshwater fish research. Preprint at bioRxiv https://doi.org/10.1101/2020.11.24.395665 (2020).
Marra, P. P., Cohen, E. B., Loss, S. R., Rutter, J. E. & Tonra, C. M. A call for full annual cycle research in animal ecology. Biol. Lett. 11, 20150552 (2015).
Smeraldo, S. et al. Ignoring seasonal changes in the ecological niche of non-migratory species may lead to biases in potential distribution models: lessons from bats. Biodivers. Conserv. 27, 2425–2441 (2018).
Magnuson, J. J., Crowder, L. B. & Medvick, P. A. Temperature as an ecological resource. Integr. Comp. Biol. 19, 331–343 (1979).
Isaak, D. J., Wenger, S. J. & Young, M. K. Big biology meets microclimatology: defining thermal niches of ectotherms at landscape scales for conservation planning. Ecol. Appl. 27, 977–990 (2017).
Poole, G. C. et al. The case for regime-based water quality standards. BioScience 54, 155–161 (2004).
Pauly, S., Soriano-Bartz, M., Moreau, J. & Jarre-Teichmann, A. A new model accounting for seasonal cessation of growth in fishes. Mar. Freshw. Res. 43, 1151–1156 (1992).
Brett, J. R. Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerkd). Integr. Comp. Biol. 11, 99–113 (1971).
Armstrong, J. B. & Schindler, D. E. Excess digestive capacity in predators reflects a life of feast and famine. Nature 476, 84–87 (2011).
Google Scholar
Childress, E. S. & Letcher, B. H. Estimating thermal performance curves from repeated field observations. Ecology 98, 1377–1387 (2017).
Neuheimer, A. B., Thresher, R. E., Lyle, J. M. & Semmens, J. M. Tolerance limit for fish growth exceeded by warming waters. Nat. Clim. Change 1, 110–113 (2011).
Lusardi, R. A., Hammock, B. G., Jeffres, C. A., Dahlgren, R. A. & Kiernan, J. D. Oversummer growth and survival of juvenile coho salmon (Oncorhynchus kisutch) across a natural gradient of stream water temperature and prey availability: an in situ enclosure experiment. Can. J. Fish. Aquat. Sci. https://doi.org/10.1139/cjfas-2018-0484 (2019).
Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).
Google Scholar
Tattam, I. A., Li, H. W., Giannico, G. R. & Ruzycki, J. R. Seasonal changes in spatial patterns of Oncorhynchus mykiss growth require year-round monitoring. Ecol. Freshw. Fish 26, 434–443 (2017).
Munch, S. B. & Conover, D. O. Accounting for local physiological adaptation in bioenergetic models: testing hypotheses for growth rate evolution by virtual transplant experiments. Can. J. Fish. Aquat. Sci. https://doi.org/10.1139/f02-013 (2011).
Eliason, E. J. et al. Differences in thermal tolerance among sockeye salmon populations. Science 332, 109–112 (2011).
Google Scholar
Forseth, T. et al. Thermal growth performance of juvenile brown trout Salmo trutta: no support for thermal adaptation hypotheses. J. Fish Biol. 74, 133–149 (2009).
Google Scholar
Kaeding, L. R. & Kaya, C. M. Growth and diets of trout from contrasting environments in a geothermally heated stream: the Firehole River of Yellowstone National Park. Trans. Am. Fish. Soc. 107, 432–438 (1978).
Armstrong, J. B., Ward, E. J., Schindler, D. E. & Lisi, P. J. Adaptive capacity at the northern front: sockeye salmon behaviourally thermoregulate during novel exposure to warm temperatures. Conserv. Physiol. 4, cow039 (2016).
Petty, J. T., Thorne, D., Huntsman, B. M. & Mazik, P. M. The temperature–productivity squeeze: constraints on brook trout growth along an Appalachian river continuum. Hydrobiologia 727, 151–166 (2014).
Google Scholar
Sommer, T. R., Harrell, W. C. & Nobriga, M. L. Habitat use and stranding risk of juvenile chinook salmon on a seasonal floodplain. North Am. J. Fish. Manag. 25, 1493–1504 (2005).
Hayes, S. A. et al. Steelhead growth in a small central California watershed: upstream and estuarine rearing patterns. Trans. Am. Fish. Soc. 137, 114–128 (2008).
Patrick, C. J. et al. Precipitation and temperature drive continental-scale patterns in stream invertebrate production. Sci. Adv. 5, eaav2348 (2019).
Google Scholar
Mejia, F. H. et al. Stream metabolism increases with drainage area and peaks asynchronously across a stream network. Aquat. Sci. 81, 9 (2018).
Kaylor, M. J., White, S. M., Saunders, W. C. & Warren, D. R. Relating spatial patterns of stream metabolism to distributions of juveniles salmonids at the river network scale. Ecosphere 10, e02781 (2019).
McNyset, K. M., Volk, C. J. & Jordan, C. E. Developing an effective model for predicting spatially and temporally continuous stream temperatures from remotely sensed land surface temperatures. Water 7, 6827–6846 (2015).
Selong, J. H., McMahon, T. E., Zale, A. V. & Barrows, F. T. Effect of temperature on growth and survival of bull trout, with application of an improved method for determining thermal tolerance in fishes. Trans. Am. Fish. Soc. 130, 1026–1037 (2001).
Mesa, M. G., Weiland, L. K., Christiansen, H. E., Sauter, S. T. & Beauchamp, D. A. Development and evaluation of a bioenergetics model for bull trout. Trans. Am. Fish. Soc. 142, 41–49 (2013).
Google Scholar
Muhlfeld, C. C. & Marotz, B. Seasonal movement and habitat use by subadult bull trout in the upper flathead river system, Montana. North Am. J. Fish. Manag. 25, 797–810 (2005).
Guzzo, M. M., Blanchfield, P. J. & Rennie, M. D. Behavioral responses to annual temperature variation alter the dominant energy pathway, growth, and condition of a cold-water predator. Proc. Natl Acad. Sci. USA 114, 9912–9917 (2017).
Google Scholar
Downing, J. A. et al. Global abundance and size distribution of streams and rivers. Inland Waters 2, 229–236 (2012).
Tockner, K., Malard, F. & Ward, J. V. An extension of the flood pulse concept. Hydrol. Process. 14, 2861–2883 (2000).
Fullerton, A. H. et al. Hydrological connectivity for riverine fish: measurement challenges and research opportunities. Freshw. Biol. 55, 2215–2237 (2010).
Fullerton, A. H. et al. Simulated juvenile salmon growth and phenology respond to altered thermal regimes and stream network shape. Ecosphere 8, e02052 (2017).
Rand, P. S., Stewart, D. J., Seelbach, P. W., Jones, M. L. & Wedge, L. R. Modeling steelhead population energetics in Lakes Michigan and Ontario. Trans. Am. Fish. Soc. 122, 977–1001 (1993).
Steel, E. A., Sowder, C. & Peterson, E. E. Spatial and temporal variation of water temperature regimes on the Snoqualmie River network. J. Am. Water Resour. Assoc. 52, 769–787 (2016).
Armstrong, J. B. et al. Diel horizontal migration in streams: juvenile fish exploit spatial heterogeneity in thermal and trophic resources. Ecology 94, 2066–2075 (2013).
Brewitt, K. S., Danner, E. M. & Moore, J. W. Hot eats and cool creeks: juvenile Pacific salmonids use mainstem prey while in thermal refuges. Can. J. Fish. Aquat. Sci. https://doi.org/10.1139/cjfas-2016-0395 (2017).
Pépino, M., Goyer, K. & Magnan, P. Heat transfer in fish: are short excursions between habitats a thermoregulatory behaviour to exploit resources in an unfavourable thermal environment? J. Exp. Biol. 218, 3461–3467 (2015).
Warren, D. R., Robinson, J. M., Josephson, D. C., Sheldon, D. R. & Kraft, C. E. Elevated summer temperatures delay spawning and reduce redd construction for resident brook trout (Salvelinus fontinalis). Glob. Change Biol. 18, 1804–1811 (2012).
Schlosser, I. J. Stream fish ecology: a landscape perspective. BioScience 41, 704–712 (1991).
Lucero, Y., Steel, E. A., Burnett, K. M. & Christiansen, K. Untangling human development and natural gradients: implications of underlying correlation structure for linking landscapes and riverine ecosystems. River Syst. 19, 207–224 (2011).
Muhlfeld, C. C. et al. Legacy introductions and climatic variation explain spatiotemporal patterns of invasive hybridization in a native trout. Glob. Change Biol. 23, 4663–4674 (2017).
Hitt, N. P., Snook, E. L. & Massie, D. L. Brook trout use of thermal refugia and foraging habitat influenced by brown trout. Can. J. Fish. Aquat. Sci. https://doi.org/10.1139/cjfas-2016-0255 (2016).
Eaton, J. G. & Scheller, R. M. Effects of climate warming on fish thermal habitat in streams of the United States. Limnol. Oceanogr. 41, 1109–1115 (1996).
Rieman, B. E. et al. Anticipated climate warming effects on bull trout habitats and populations across the interior Columbia River basin. Trans. Am. Fish. Soc. 136, 1552–1565 (2007).
Starcevich, S. J., Howell, P. J., Jacobs, S. E. & Sankovich, P. M. Seasonal movement and distribution of fluvial adult bull trout in selected watersheds in the mid-Columbia River and Snake River basins. PLoS ONE 7, e37257 (2012).
Google Scholar
Hanson, P. C., Johnson, T. B., Schindler, D. E., & Kitchell, J. F. Fish Bioenergetics 3.0 for Windows (ASC, 1997).
Hawkins, B. L., Fullerton, A. H., Sanderson, B. L. & Steel, E. A. Individual-based simulations suggest mixed impacts of warmer temperatures and a nonnative predator on Chinook salmon. Ecosphere 11, e03218 (2020).
Crawford, S. S. & Muir, A. M. Global introductions of salmon and trout in the genus Oncorhynchus: 1870-2007. Rev. Fish Biol. Fisher 18, 313–344 (2008).
Beauchamp, D. A. et al. Bioenergetic responses by Pacific salmon to climate and ecosystem variation. N. Pac. Anadr. Fish Comm. Bull. 4, 257–269 (2007).
Independent Scientific Advisory Board Density Dependence and its Implications for Fish Management and Restoration Programs in the Columbia River Basin ISAB 2015-1 (Northwest Power and Conservation Council, 2015).
Railsback, S. F. & Rose, K. A. Bioenergetics modeling of stream trout growth: temperature and food consumption effects. Trans. Am. Fish. Soc. 128, 241–256 (1999).
Van Winkle, W. et al. Individual-based model of sympatric populations of brown and rainbow trout for instream flow assessment: model description and calibration. Ecol. Model. 110, 175–207 (1998).
Source: Resources - nature.com