Leroy, M. C. et al. Assessment of PAH dissipation processes in large-scale outdoor mesocosms simulating vegetated road-side swales. Sci. Total Environ. 520, 146–153 (2015).
Google Scholar
Helmreich, B., Hilliges, R., Schriewer, A. & Horn, H. Runoff pollutants of a highly trafficked urban road – correlation analysis and seasonal influences. Chemosphere 80, 991–997 (2010).
Google Scholar
Wagner, S. et al. Tire wear particles in the aquatic environment – A review on generation, analysis, occurrence, fate and effects. Water Res. 139, 83–100 (2018).
Google Scholar
Pramanik, B. K., Roychand, R., Monira, S., Bhuiyan, M. & Jegatheesan, V. Fate of road-dust associated microplastics and per- and polyfluorinated substances in stormwater. Process Saf. Environ. Prot. 144, 236–241 (2020).
Google Scholar
Hensen, B. et al. Entry of biocides and their transformation products into groundwater via urban stormwater infiltration systems. Water Res. 144, 413–423 (2018).
Google Scholar
Mrowiec, M. Road runoff management using improved infiltration ponds. Transp. Res. Procedia 14, 2659–2667 (2016).
Google Scholar
Goh, X., Radhakrishnan, M., Zevenbergen, C. & Pathirana, A. Effectiveness of Runoff control legislation and active, beautiful, clean (ABC) waters design features in Singapore. Water 9, 627 (2017).
Google Scholar
Liu, A., Liu, L., Li, D. & Guan, Y. Characterizing heavy metal build-up on urban road surfaces: Implication for stormwater reuse. Sci. Total Environ. 515–516, 20–29 (2015).
Google Scholar
Chen, C., Guo, W. & Ngo, H. H. Pesticides in stormwater runoff—a mini review. Front. Environ Sci. Eng. 13, 72 (2019).
Google Scholar
Leroy, M. C. et al. Performance of vegetated swales for improving road runoff quality in a moderate traffic urban area. Sci. Total Environ. 566–567, 113–121 (2016).
Google Scholar
Weiss, P. T., LeFevre, G. & Gulliver, J. S. Contamination of Soil and Groundwater due to Stormwater Infiltration Practices. Saint Anthony Falls Laboratory Project Report No. 38 (Saint Anthony Falls Laboratory, 2008).
Cederkvist, K., Jensen, M. B. & Holm, P. E. Method for assessment of stormwater treatment facilities – synthetic road runoff addition including micro-pollutants and tracer. J. Environ. Manag. 198, 107–117 (2017).
Google Scholar
Tedoldi, D., Chebbo, G., Pierlot, D., Kovacs, Y. & Gromaire, M. C. Impact of runoff infiltration on contaminant accumulation and transport in the soil/filter media of Sustainable Urban Drainage Systems: a literature review. Sci. Total Environ. 569–570, 904–926 (2016).
Google Scholar
Murakami, M. et al. Multiple evaluations of the removal of pollutants in road runoff by soil infiltration. Water Res. 42, 2745–2755 (2008).
Google Scholar
Flanagan, K. et al. Retention and transport processes of particulate and dissolved micropollutants in stormwater biofilters treating road runoff. Sci. Total Environ. 656, 1178–1190 (2019).
Google Scholar
Piguet, P., Parriaux, A. & Bensimon, M. The diffuse infiltration of road runoff: An environmental improvement. Sci. Total Environ. 397, 13–23 (2008).
Google Scholar
Scholz, M. & Kazemi Yazdi, S. Treatment of road runoff by a combined storm water treatment, detention and infiltration system. Water Air Soil Pollut. 198, 55–64 (2009).
Google Scholar
Huber, M. & Helmreich, B. Stormwater management: calculation of traffic area runoff loads and traffic related emissions. Water 8, 294 (2016).
Krein, A. & Schorer, M. Road runoff pollution by polycyclic aromatic hydrocarbons and its contribution to river sediments. Water Res. 34, 4110–4115 (2000).
Google Scholar
Murakami, M., Nakajima, F. & Furumai, H. Modelling of runoff behaviour of particle-bound polycyclic aromatic hydrocarbons (PAHs) from roads and roofs. Water Res. 38, 4475–4483 (2004).
Google Scholar
Pinasseau, L. et al. Use of passive sampling and high resolution mass spectrometry using a suspect screening approach to characterise emerging pollutants in contaminated groundwater and runoff. Sci. Total Environ. 672, 253–263 (2019).
Google Scholar
Bergé, A. et al. Non-target strategies by HRMS to evaluate fluidized micro-grain activated carbon as a tertiary treatment of wastewater. Chemosphere 213, 587–595 (2018).
Google Scholar
Nguyen, T. M. H. et al. Influences of chemical properties, soil properties, and solution ph on soil-water partitioning coefficients of per- and polyfluoroalkyl substances (PFASs). Environ. Sci. Technol. 54, 15883–15892 (2020).
Google Scholar
Batjes, N. H. Methodological Framework for Assessment and Mapping of the Vulnerability of Soils to Diffuse Pollution at a Continental Level (SOVEUR Project) (ISRIC—World Soil Information, 1997).
Arrêté du 8 janvier 1998 fixant les prescriptions techniques applicables aux épandages de boues sur les sols agricoles pris en application du décret no. 97-1133 du 8 décembre 1997 relatif à l’épandage des boues issues du traitement des eaux usées. J. Off. 16, https://www.legifrance.gouv.fr/loda/id/JORFTEXT000000570287/ (1998).
Sauvé, S., Hendershot, W. & Allen, H. E. Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden and organic matter. Environ. Sci. Technol. 34, 1125–1131 (2000).
Google Scholar
Yadav, S. Correlation analysis in biological studies. J. Pract. Cardiovasc. Sci. 4, 116 (2018).
Google Scholar
Cottin, N. & Merlin, G. Removal of PAHs from laboratory columns simulating the humus upper layer of vertical flow constructed wetlands. Chemosphere 73, 711–716 (2008).
Google Scholar
Ren, X. et al. Sorption, transport and biodegradation – an insight into bioavailability of persistent organic pollutants in soil. Sci. Total Environ. 610–611, 1154–1163 (2018).
Google Scholar
Wiest, L. et al. Priority substances in accumulated sediments in a stormwater detention basin from an industrial area. Environ. Pollut. 243, 1669–1678 (2018).
Google Scholar
Hares, R. J. & Ward, N. I. Sediment accumulation in newly constructed vegetative treatment facilities along a new major road. Sci. Total Environ. 334–335, 473–479 (2004).
Google Scholar
Strömvall, A., Norin, M. & Pettersson, T. J. R. Organic contaminants in urban sediments and vertical leaching in road ditches. In The Eighth Highway and Urban Environment Symposium (eds Morrison, G. M. & Rauch, S.) 235–247 (Springer, 2007).
Dechesne, M., Barraud, S. & Bardin, J. P. Spatial distribution of pollution in an urban stormwater infiltration basin. J. Contam. Hydrol. 72, 189–205 (2004).
Google Scholar
Dierkes, C. & Geiger, W. F. Pollution retention capabilities of roadside soils. Water Sci. Technol. 39, 201–208 (1999).
Google Scholar
Sauvé, S., Mcbride, M. B., Norvell, W. A. & Hendershot, W. H. Copper solubility and speciation of in situ contaminated soils: effects of copper level, pH and organic matter. Water Air Soil Pollut. 100, 133–149 (1997).
Google Scholar
Sauvé, S., Manna, S., Turmel, M. C., Roy, A. G. & Courchesne, F. Solid-solution partitioning of Cd, Cu, Ni, Pb, and Zn in the organic horizons of a forest soil. Environ. Sci. Technol. 37, 5191–5196 (2003).
Google Scholar
El-Mufleh, A. et al. Distribution of PAHs and trace metals in urban stormwater sediments: combination of density fractionation, mineralogy and microanalysis. Environ. Sci. Pollut. Res. 21, 9764–9776 (2014).
Google Scholar
Rostvall, A. et al. Removal of pharmaceuticals, perfluoroalkyl substances and other micropollutants from wastewater using lignite, Xylit, sand, granular activated carbon (GAC) and GAC+Polonite® in column tests – role of physicochemical properties. Water Res. 137, 97–106 (2018).
Google Scholar
Paredes, L., Fernandez-Fontaina, E., Lema, J. M., Omil, F. & Carballa, M. Understanding the fate of organic micropollutants in sand and granular activated carbon biofiltration systems. Sci. Total Environ. 551–552, 640–648 (2016).
Google Scholar
FAO, ITPS, GSBI, SCBD & EC. State of knowledge of soil biodiversity – status, challenges and potentialities. FAO https://doi.org/10.4060/cb1928en (2020).
Tietz, A., Langergraber, G., Watzinger, A., Haberl, R. & Kirschner, A. K. T. Bacterial carbon utilization in vertical subsurface flow constructed wetlands. Water Res. 42, 1622–1634 (2008).
Google Scholar
Weil, R. R. & Brady, N. C. The Nature and Properties of Soils 15th edn (Pearson Education, 2016).
Usman, K., Al-Ghouti, M. A. & Abu-Dieyeh, M. H. The assessment of cadmium, chromium, copper, and nickel tolerance and bioaccumulation by shrub plant Tetraena qataranse. Sci. Rep. 9, 1–11 (2019).
Nuel, M., Laurent, J., Bois, P., Heintz, D. & Wanko, A. Seasonal and ageing effect on the behaviour of 86 drugs in a full-scale surface treatment wetland: removal efficiencies and distribution in plants and sediments. Sci. Total Environ. 615, 1099–1109 (2018).
Google Scholar
FAO. World Reference Base For Soil Resources 2014. International Soil Classification System For Naming Soils And Creating Legends For Soil Maps. World Soil Resources Report No. 106 (2014).
Villette, C. et al. In situ localization of micropollutants and associated stress response in Populus nigra leaves. Environ. Int. 126, 523–532 (2019).
Google Scholar
Schymanski, E. L. et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ. Sci. Technol. 48, 2097–2098 (2014).
Google Scholar
Boleda, M. R., Galceran, M. T. & Ventura, F. Validation and uncertainty estimation of a multiresidue method for pharmaceuticals in surface and treated waters by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1286, 146–158 (2013).
Google Scholar
Barupal, D. K. & Fiehn, O. Chemical similarity enrichment analysis (ChemRICH) as alternative to biochemical pathway mapping for metabolomic datasets. Sci. Rep. 7, 1–11 (2017).
Google Scholar
Source: Resources - nature.com