in

Abundance and distribution patterns of cetaceans and their overlap with vessel traffic in the Humboldt Current Ecosystem, Chile

  • Thiel, M. et al. The Humboldt Current System of northern and central Chile—Oceanographic processes, ecological interactions and socioeconomic feedback. Oceanogr. Mar. Biol. Annu. Rev. 45, 195–344 (2007).

    Google Scholar 

  • FAO. The State of World Fisheries and Aquaculture 2020. Sustainability in action 2020.

  • Castilla, J. C. & Camus, P. A. The Humboldt-El Niño scenario: Coastal benthic resources and anthropogenic influences, with particular reference to the 1982/83 ENSO. S. Afr. J. Mar. Sci. 12, 703–712. https://doi.org/10.2989/02577619209504735 (1992).

    Article 

    Google Scholar 

  • Alheit, J. & Niquen, M. Regime shifts in the Humboldt Current ecosystem. Prog. Oceanogr. 60, 201–222. https://doi.org/10.1016/j.pocean.2004.02.006 (2004).

    Article 

    Google Scholar 

  • González, H. E. et al. Carbon fluxes within the epipelagic zone of the Humboldt Current System off Chile: The significance of euphausiids and diatoms as key functional groups for the biological pump. Prog. Oceanogr. 83, 217–227. https://doi.org/10.1016/j.pocean.2009.07.036 (2009).

    Article 

    Google Scholar 

  • Quiñones, R. A., Levipan, H. A. & Urrutia, H. Spatial and temporal variability of planktonic archaeal abundance in the Humboldt Current System off Chile. Deep Sea Res. Part II 56, 1073–1082. https://doi.org/10.1016/j.dsr2.2008.09.012 (2009).

    Article 

    Google Scholar 

  • Antezana, T. Euphausia mucronata: A keystone herbivore and prey of the Humboldt Current System. Deep Sea Res. Part II 57, 652–662. https://doi.org/10.1016/j.dsr2.2009.10.014 (2010).

    Article 

    Google Scholar 

  • Anguita, C., Gelcich, S., Aldana, M. & Pulgar, J. Exploring the influence of upwelling on the total allowed catch and harvests of a benthic gastropod managed under a territorial user rights for fisheries regime along the Chilean coast. Ocean Coast. Manag. 195, 105256. https://doi.org/10.1016/j.ocecoaman.2020.105256 (2020).

    Article 

    Google Scholar 

  • González, J. E., Yannicelli, B. & Stotz, W. The interplay of natural variability, productivity and management of the benthic ecosystem in the Humboldt Current System: Twenty years of assessment of Concholepas concholepas fishery under a TURF management system. Ocean Coast. Manag. 208, 105628. https://doi.org/10.1016/j.ocecoaman.2021.105628 (2021).

    Article 

    Google Scholar 

  • Canales, T. M. et al. Endogenous, climate, and fishing influences on the population dynamics of Small Pelagic Fish in the Southern Humboldt Current Ecosystem. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00082 (2020).

    Article 

    Google Scholar 

  • González, J. E., Ortiz, M. Exploring harvest strategies in a benthic habitat in the Humboldt Current System (Chile): A study case. In Marine Coastal Ecosystems Modelling and Conservation: Latin American Experiences 127–141 (Springer International Publishing, 2021). https://doi.org/10.1007/978-3-030-58211-1_6.

  • Ortiz, M. Pre-image population indices for anchovy and sardine species in the Humboldt Current System off Peru and Chile: Years decaying productivity. Ecol. Ind. 119, 106844. https://doi.org/10.1016/j.ecolind.2020.106844 (2020).

    Article 

    Google Scholar 

  • Tognelli, M. F., Silva-Garcia, C., Labra, F. A. & Marquet, P. A. Priority areas for the conservation of coastal marine vertebrates in Chile. Biol. Conserv. 126, 420–428. https://doi.org/10.1016/j.biocon.2005.06.021 (2005).

    Article 

    Google Scholar 

  • Bustamante, C., Vargas-Caro, C. & Bennett, M. B. Not all fish are equal: Functional biodiversity of cartilaginous fishes (Elasmobranchii and Holocephali) in Chile. J. Fish Biol. 85, 1617–1633. https://doi.org/10.1111/jfb.12517 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Sarmiento-Devia, R. A., Harrod, C. & Pacheco, A. S. Ecology and Conservation of Sea Turtles in Chile. Chelonian Conserv. Biol. 14, 21–33. https://doi.org/10.2744/ccab-14-01-21-33.1 (2015).

    Article 

    Google Scholar 

  • Pérez-Álvarez, M. J., Alvarez, E., Aguayo-Lobo, A. & Olavarría, C. Occurrence and distribution of Chilean dolphin (Cephalorhynchus eutropia) in coastal waters of central Chile. N.Z. J. Mar. Freshw. Res. 41, 405–409. https://doi.org/10.1080/00288330709509931 (2007).

    Article 

    Google Scholar 

  • Pacheco, A. S. et al. Cetacean diversity revealed from whale-watching observations in Northern Peru. Aquat. Mamm. 45, 116–122. https://doi.org/10.1578/AM.45.1.2019.116 (2019).

    Article 

    Google Scholar 

  • Buchan, S. J., Vásquez, P., Olavarría, C. & Castro, L. R. Prey items of baleen whale species off the coast of Chile from fecal plume analysis. Mar. Mamm. Sci. 37, 1116–1127 (2021).

    Article 

    Google Scholar 

  • Hucke-Gaete, R. et al. From Chilean Patagonia to Galapagos, Ecuador: Novel insights on blue whale migratory pathways along the Eastern South Pacific. PeerJ 6, e4695. https://doi.org/10.7717/peerj.4695 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Llapapasca, M. A. et al. Modeling the potential habitats of dusky, commons and bottlenose dolphins in the Humboldt Current System off Peru: The influence of non-El Niño vs. El Niño 1997–98 conditions and potential prey availability. Prog. Oceanogr. 168, 169–181. https://doi.org/10.1016/j.pocean.2018.09.003 (2018).

    Article 

    Google Scholar 

  • Sepúlveda, M. et al. From whaling to whale watching: Identifying fin whale critical foraging habitats off the Chilean coast. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 821–829. https://doi.org/10.1002/aqc.2899 (2018).

    Article 

    Google Scholar 

  • Williams, R. et al. Chilean blue whales as a case study to illustrate methods to estimate abundance and evaluate conservation status of rare species. Conserv. Biol. 25, 526–535. https://doi.org/10.1111/j.1523-1739.2011.01656.x (2011).

    Article 
    PubMed 

    Google Scholar 

  • Moore, J. E. & Barlow, J. Bayesian state-space model of fin whale abundance trends from a 1991–2008 time series of line-transect surveys in the California Current. J. Appl. Ecol. 48, 1195–1205. https://doi.org/10.1111/j.1365-2664.2011.02018.x (2011).

    Article 

    Google Scholar 

  • Campbell, G. S. et al. Inter-annual and seasonal trends in cetacean distribution, density and abundance off southern California. Deep Sea Res. Part II 112, 143–157. https://doi.org/10.1016/j.dsr2.2014.10.008 (2015).

    Article 

    Google Scholar 

  • Nichol, L. M., Wright, B. M., O’Hara, P. & Ford, J. K. B. Risk of lethal vessel strikes to humpback and fin whales off the west coast of Vancouver Island, Canada. Endanger. Species Res. 32, 373–390. https://doi.org/10.3354/esr00813 (2017).

    Article 

    Google Scholar 

  • Pennino, M. G. et al. A spatially explicit risk assessment approach: Cetaceans and marine traffic in the Pelagos Sanctuary (Mediterranean Sea). PLoS One 12, e0179686. https://doi.org/10.1371/journal.pone.0179686 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Waerebeek, K. & Reyes, J. C. Catch of small cetaceans at Pucusana Port, central Peru, during 1987. Biol. Conserv. 51, 15–22. https://doi.org/10.1016/0006-3207(90)90028-N (1990).

    Article 

    Google Scholar 

  • Mangel, J. C. et al. Small cetacean captures in Peruvian artisanal fisheries: High despite protective legislation. Biol. Conserv. 143, 136–143. https://doi.org/10.1016/j.biocon.2009.09.017 (2010).

    Article 

    Google Scholar 

  • Campbell, E., Pasara-Polack, A., Mangel, J. C. & Alfaro-Shigueto, J. Use of small cetaceans as bait in small-scale fisheries in Peru. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.534507 (2020).

    Article 

    Google Scholar 

  • Reyes, J. C. & Oporto, J. A. Gillnet fisheries and cetaceans in the southeast Pacific. Report of the International Whaling Commission 467–474 (1994).

  • Aguayo-Lobo, A. Los cetáceos y sus perspectivas de conservación. Estudios Oceanológicos 18, 35–43 (1999).

    Google Scholar 

  • Félix, F., Muñoz, M., Falconí, J., Botero, N., Haase, B., et al. Entanglement of humpback whales in artisanal fishing gear in Ecuador. J. Cetacean. Res. Manag. 283–290 (2020).

  • Félix, F. et al. Challenges and opportunities for the conservation of marine mammals in the Southeast Pacific with the entry into force of the U.S. Marine Mammal Protection Act. Reg. Stud. Mar. Sci. 48, 102036. https://doi.org/10.1016/j.rsma.2021.102036 (2021).

    Article 

    Google Scholar 

  • García-Cegarra, A. M. & Pacheco, A. S. Collision risk areas between fin and humpback whales with large cargo vessels in Mejillones Bay (23°S), northern Chile. Mar. Policy 103, 182–186. https://doi.org/10.1016/j.marpol.2018.12.022 (2019).

    Article 

    Google Scholar 

  • Santos-Carvallo, M. et al. Impacts of whale-watching on the short-term behavior of Fin Whales (Balaenoptera physalus) in a marine protected area in the southeastern pacific. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.623954 (2021).

    Article 

    Google Scholar 

  • Villagra, D., García-Cegarra, A., Gallardo, D. I. & Pacheco, A. S. Energetic effects of whale-watching boats on humpback whales on a breeding ground. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.600508 (2021).

    Article 

    Google Scholar 

  • Buckland, S., Anderson, D., Burnham, K., Laake, J., Borchers, D., Thomas, L. Introduction to Distance Sampling Estimating Abundance of Biological Populations. (Oxford University Press, 2001).

  • Hedley, S. L. & Buckland, S. T. Spatial models for line transect sampling. JABES 9, 181–199. https://doi.org/10.1198/1085711043578 (2004).

    Article 

    Google Scholar 

  • Williams, R., Hedley, S. L., Hammond, P. S. Modeling distribution and abundance of Antarctic baleen whales using ships of opportunity (2006).

  • DoniolValcroze, T., Berteaux, D., Larouche, P. & Sears, R. Influence of thermal fronts on habitat selection by four rorqual whale species in the Gulf of St. Lawrence. Mar. Ecol. Prog. Ser. 335, 207–216. https://doi.org/10.3354/meps335207 (2007).

    Article 

    Google Scholar 

  • Scales, K. L. et al. Should I stay or should I go? Modelling year-round habitat suitability and drivers of residency for fin whales in the California Current. Divers. Distrib. 23, 1204–1215. https://doi.org/10.1111/ddi.12611 (2017).

    Article 

    Google Scholar 

  • Bedriñana-Romano, L. et al. Integrating multiple data sources for assessing blue whale abundance and distribution in Chilean Northern Patagonia. Divers. Distrib. https://doi.org/10.1111/ddi.12739 (2018).

    Article 

    Google Scholar 

  • Bedriñana-Romano, L. et al. Defining priority areas for blue whale conservation and investigating overlap with vessel traffic in Chilean Patagonia, using a fast-fitting movement model. Sci. Rep. 11, 2709. https://doi.org/10.1038/s41598-021-82220-5 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pirotta, E., Matthiopoulos, J., MacKenzie, M., Scott-Hayward, L. & Rendell, L. Modelling sperm whale habitat preference: A novel approach combining transect and follow data. Mar. Ecol. Prog. Ser. 436, 257–272. https://doi.org/10.3354/meps09236 (2011).

    Article 

    Google Scholar 

  • Mendelssohn, R. rerddapXtracto: Extracts Environmental Data from “ERDDAP” Web Services. (2020).

  • Lau-Medrano, W. grec: Gradient-Based Recognition of Spatial Patterns in Environmental Data. (2020).

  • Belkin, I. M. & O’Reilly, J. E. An algorithm for oceanic front detection in chlorophyll and SST satellite imagery. J. Mar. Syst. 78, 319–326. https://doi.org/10.1016/j.jmarsys.2008.11.018 (2009).

    Article 

    Google Scholar 

  • Hijmans, R. J., van Etten, J., Cheng, J., Sumner, M., Mattiuzzi, M., Greenberg, J. A., et al. raster: Geographic Data Analysis and Modeling. (2018).

  • Royle, J. A. N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115. https://doi.org/10.1111/j.0006-341X.2004.00142.x (2004).

    MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Chelgren, N. D., Samora, B., Adams, M. J. & McCreary, B. Using spatiotemporal models and distance sampling to map the space use and abundance of newly metamorphosed Western Toads (Anaxyrus boreas). Herpetol. Conserv. Biol. 6, 16 (2011).

    Google Scholar 

  • Hartig, F., Lohse, L. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. (2022).

  • Gelman, A., Meng, X.-L. & Stern, H. Posterior predictive assessment of model fitness via realized discrepancies. Stat. Sin. 6, 733–760. https://doi.org/10.2307/24306036 (1996).

    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • Kery, M. & Royle, J. A. Applied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance and Species Richness in R and BUGS: Volume 1: Prelude and Static Models. (Academic Press, 2015).

  • R DCT. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2015).

  • Plummer, M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. (2003).

  • Fonnesbeck, C. J., Garrison, L. P., Ward-Geiger, L. I. & Baumstark, R. D. Bayesian hierarchichal model for evaluating the risk of vessel strikes on North Atlantic right whales in the SE United States. Endanger. Species Res. 6, 87–94. https://doi.org/10.3354/esr00134 (2008).

    Article 

    Google Scholar 

  • Vanderlaan, A. S. M., Taggart, C. T., Serdynska, A. R., Kenney, R. D. & Brown, M. W. Reducing the risk of lethal encounters: Vessels and right whales in the Bay of Fundy and on the Scotian Shelf. Endanger. Species Res. 4, 283–297. https://doi.org/10.3354/esr00083 (2008).

    Article 

    Google Scholar 

  • Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62, 2868–2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x (2008).

    Article 
    PubMed 

    Google Scholar 

  • Hijmans, R. J., Phillips, S., Leathwick, J., Elith, J. & Hijmans, M. R. J. Package ‘dismo’. Circles 9, 1–68 (2017).

    Google Scholar 

  • Daneri, G. et al. Primary production and community respiration in the Humboldt Current System off Chile and associated oceanic areas. Mar. Ecol. Prog. Ser. 197, 41–49. https://doi.org/10.3354/meps197041 (2000).

    Article 

    Google Scholar 

  • Montecino, V. & Lange, C. B. The Humboldt Current System: Ecosystem components and processes, fisheries, and sediment studies. Prog. Oceanogr. 83, 65–79. https://doi.org/10.1016/j.pocean.2009.07.041 (2009).

    Article 

    Google Scholar 

  • Escribano, R., Hidalgo, P. & Krautz, C. Zooplankton associated with the oxygen minimum zone system in the northern upwelling region of Chile during March 2000. Deep Sea Res. Part II 56, 1083–1094. https://doi.org/10.1016/j.dsr2.2008.09.009 (2009).

    Article 

    Google Scholar 

  • Perez-Alvarez, M. et al. Fin whales (Balaenoptera physalus) feeding on Euphausia mucronata in nearshore waters off North-Central Chile. Aquat. Mamm. 32, 109–113. https://doi.org/10.1578/AM.32.1.2006.109 (2006).

    Article 

    Google Scholar 

  • Riquelme-Bugueño, R. et al. Fatty acid composition in the endemic Humboldt Current krill, Euphausia mucronata (Crustacea, Euphausiacea) in relation to the phytoplankton community and oceanographic variability off Dichato coast in central Chile. Prog. Oceanogr. 188, 102425. https://doi.org/10.1016/j.pocean.2020.102425 (2020).

    Article 

    Google Scholar 

  • Escribano, R., Marin, V. & Irribarren, C. Distribution of Euphausia mucronata at the upwelling area of Peninsula Mejillones, northern Chile: The influence of the oxygen minimum layer. Sci. Mar. 64, 69–77. https://doi.org/10.3989/scimar.2000.64n169 (2000).

    Article 

    Google Scholar 

  • Riquelme-Bugueno, R., Escribano, R. & Gomez-Gutierrez, J. Somatic and molt production in Euphausia mucronata off central-southern Chile: The influence of coastal upwelling variability. Mar. Ecol. Prog. Ser. 476, 39–57 (2013).

    Article 

    Google Scholar 

  • Savoca, M. S. et al. Baleen whale prey consumption based on high-resolution foraging measurements. Nature 599, 85–90. https://doi.org/10.1038/s41586-021-03991-5 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Roman, J. & McCarthy, J. J. The whale pump: Marine mammals enhance primary productivity in a coastal basin. PLoS One 5, e13255. https://doi.org/10.1371/journal.pone.0013255 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hucke-Gaete, R. Whales might also be an important component in patagonian fjord ecosystems: Comment to Iriarte et al. Ambio 40, 104–105. https://doi.org/10.1007/s13280-010-0110-8 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lavery, T. J. et al. Whales sustain fisheries: Blue whales stimulate primary production in the Southern Ocean. Mar. Mamm. Sci. https://doi.org/10.1111/mms.12108 (2014).

    Article 

    Google Scholar 

  • Roman, J. et al. Whales as marine ecosystem engineers. Front. Ecol. Environ. 12, 377–385. https://doi.org/10.1890/130220 (2014).

    Article 

    Google Scholar 

  • Hucke-Gaete, R., Osman, L. P., Moreno, C. A., Findlay, K. P. & Ljungblad, D. K. Discovery of a blue whale feeding and nursing ground in southern Chile. Proc. R. Soc. Lond. B 271, S170–S173. https://doi.org/10.1098/rsbl.2003.0132 (2004).

    Article 

    Google Scholar 

  • Buchan, S. J. & Quiones, R. A. First insights into the oceanographic characteristics of a blue whale feeding ground in northern Patagonia, Chile. Mar. Ecol. Prog. Ser. 554, 183–199. https://doi.org/10.3354/meps11762 (2016).

    CAS 
    Article 

    Google Scholar 

  • Findlay, K., Pitman, R., Tsurui, T., Sakai, K., Ensor, P., Iwakami, H., et al. IWC-southern whale and ecosystem research (IWC/SOWER) blue whale Cruise, Chile. Documento Técnico, IWC 1998 (1998).

  • Branch, T. A. et al. Past and present distribution, densities and movements of blue whales Balaenoptera musculus in the Southern Hemisphere and northern Indian Ocean. Mamm. Rev. 37, 116–175. https://doi.org/10.1111/j.1365-2907.2007.00106.x (2007).

    Article 

    Google Scholar 

  • Barlow, D. R., Klinck, H., Ponirakis, D., Garvey, C. & Torres, L. G. Temporal and spatial lags between wind, coastal upwelling, and blue whale occurrence. Sci. Rep. 11, 6915. https://doi.org/10.1038/s41598-021-86403-y (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Galletti-Vernazzani, B., Jackson, J. A., Cabrera, E., Carlson, C. A. Jr. & RLB.,. Estimates of abundance and trend of chilean blue whales off Isla de Chiloé, Chile. PLoS One 12, e0168646. https://doi.org/10.1371/journal.pone.0168646 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Friedlaender, A. S., Goldbogen, J. A., Hazen, E. L., Calambokidis, J. & Southall, B. L. Feeding performance by sympatric blue and fin whales exploiting a common prey resource. Mar. Mamm. Sci. 31, 345–354. https://doi.org/10.1111/mms.12134 (2015).

    Article 

    Google Scholar 

  • Abrahms, B. et al. Memory and resource tracking drive blue whale migrations. PNAS 116, 5582–5587 (2019).

    CAS 
    Article 

    Google Scholar 

  • Clarke, R., Aguayo, A. & Basulto, S. Whale observation and whale marking off the coast of Chile in 1964. Sci. Rep. Whales Res. Inst. Tokyo 30, 117–178 (1978).

    Google Scholar 

  • Allison, C. IWC individual and summary catch databases Version 5.5 (12 February 2013). Available from the International Whaling Commission 135 (2013).

  • Pastene, L. A., Acevedo, J. & Branch, T. A. Morphometric analysis of Chilean blue whales and implications for their taxonomy. Mar. Mamm. Sci. 36, 116–135. https://doi.org/10.1111/mms.12625 (2020).

    Article 

    Google Scholar 

  • Rendell, L., Whitehead, H. & Escribano, R. Sperm whale habitat use and foraging success off northern Chile: Evidence of ecological links between coastal and pelagic systems. Mar. Ecol. Prog. Ser. 275, 289–295. https://doi.org/10.3354/meps275289 (2004).

    Article 

    Google Scholar 

  • Jaquet, N. & Whitehead, H. Scale-dependent correlation of sperm whale distribution with environmental features and productivity in the South Pacific. Mar. Ecol. Prog. Ser. 135, 1–9. https://doi.org/10.3354/meps135001 (1996).

    Article 

    Google Scholar 

  • O’Hern, J. E., Biggs, D. C. Sperm whale (Physeter macrocephalus) habitat in the Gulf of Mexico: Satellite observed ocean color and altimetry applied to small-scale variability in distribution. Aquat. Mamm. 35 (2009).

  • Koen Alonso, M., Crespo, E. A., García, N. A., Pedraza, S. N. & Coscarella, M. A. Diet of dusky dolphins, Lagenorhynchus obscurus, in waters off Patagonia, Argentina. Fish. Bull. 96, 366–374 (1998).

    Google Scholar 

  • García-Godos, I., Waerebeek, K. V., Reyes, J. C., Alfaro-Shigueto, J. & Arias-Schreiber, M. Prey occurrence in the stomach contents of four small cetacean species in Peru. Latin Am. J. Aquat. Mamm. 6, 171–183. https://doi.org/10.5597/lajam00122 (2007).

    Article 

    Google Scholar 

  • Dans, S. L., Crespo, E. A., Koen-Alonso, M., Markowitz, T. M., Berón Vera, B., Dahood, A. D. Chapter 3—Dusky dolphin trophic ecology: Their role in the food web. In The Dusky Dolphin (eds. Würsig, B., Würsig, M.) 49–74 (Academic Press, 2010). https://doi.org/10.1016/B978-0-12-373723-6.00003-5.

  • Romero, M. A. et al. Feeding habits of two sympatric dolphin species off North Patagonia, Argentina. Mar. Mamm. Sci. 28, 364–377 (2012).

    Article 

    Google Scholar 

  • Loizaga de Castro, R. et al. Feeding ecology of dusky dolphins Lagenorhynchus obscurus: Evidence from stable isotopes. J. Mammal. 97, 310–320. https://doi.org/10.1093/jmammal/gyv180 (2016).

    Article 

    Google Scholar 

  • Cipriano, F. W. Behavior and occurrence patterns, feeding ecology, and life history of dusky dolphins (Lagenorhynchus obscurus) off Kaikoura, New Zealand. (1992).

  • Benoit-Bird, K. J., Würsig, B. & Mfadden, C. J. Dusky dolphin (lagenorhynchus obscurus) foraging in two different habitats: Active acoustic detection of dolphins and their prey. Mar. Mamm. Sci. 20, 215–231. https://doi.org/10.1111/j.1748-7692.2004.tb01152.x (2004).

    Article 

    Google Scholar 

  • Van Waerebeek, K. Records of dusky dolphins Lagenorhynchus obscurus (Gray, 1828) in the eastern South Pacific. Beaufortia (1992).

  • Selzer, L. A. & Payne, P. M. The distribution of white-sided (Lagenorhynchus acutus) and common dolphins (Delphinus delphis) vs. Environmental features of the continental shelf of the Northeastern United States. Mar. Mamm. Sci. 4, 141–153. https://doi.org/10.1111/j.1748-7692.1988.tb00194.x (1988).

    Article 

    Google Scholar 

  • Neumann, D. R. Seasonal movements of short-beaked common dolphins (Delphinus delphis) in the north-western Bay of Plenty, New Zealand: Influence of sea surface temperature and El Niño/La Niña. N.Z. J. Mar. Freshw. Res. 35, 371–374. https://doi.org/10.1080/00288330.2001.9517007 (2001).

    Article 

    Google Scholar 

  • Peters, K. J. et al. Foraging ecology of the common dolphin Delphinus delphis revealed by stable isotope analysis. Mar. Ecol. Prog. Ser. 652, 173–186. https://doi.org/10.3354/meps13482 (2020).

    CAS 
    Article 

    Google Scholar 

  • Brand, D. et al. Common dolphins, common in neritic waters off southern Israel, demonstrate uncommon dietary habits. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 15–21. https://doi.org/10.1002/aqc.3165 (2021).

    Article 

    Google Scholar 

  • Barlow, J. & Taylor, B. L. Estimates of sperm whale abundance in the Northeastern temperate pacific from a combined acoustic and visual survey. Mar. Mamm. Sci. 21, 429–445. https://doi.org/10.1111/j.1748-7692.2005.tb01242.x (2005).

    Article 

    Google Scholar 

  • Cañadas, A., Desportes, G. & Borchers, D. Estimation of g (0) and abundance of common dolphins (Delphinus delphis) from the NASS-95 Faroese survey. J. Cetac. Res. Manag. 6, 191–198 (2004).

    Google Scholar 

  • Miller, D. L., Burt, M. L., Rexstad, E. A. & Thomas, L. Spatial models for distance sampling data: Recent developments and future directions. Methods Ecol. Evol. 4, 1001–1010. https://doi.org/10.1111/2041-210X.12105 (2013).

    Article 

    Google Scholar 

  • Sigourney, D. B. et al. Developing and assessing a density surface model in a Bayesian hierarchical framework with a focus on uncertainty: Insights from simulations and an application to fin whales (Balaenoptera physalus). PeerJ 8, e8226. https://doi.org/10.7717/peerj.8226 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Panigada, S. et al. Mediterranean fin whales at risk from fatal ship strikes. Mar. Pollut. Bull. 52, 1287–1298. https://doi.org/10.1016/j.marpolbul.2006.03.014 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ribeiro, S., Viddi, F. A. & Freitas, T. R. Behavioural responses of Chilean dolphins (Cephalorhynchus eutropia) to boats in Yaldad Bay, southern Chile. Aquat. Mamm. 31, 234 (2005).

    Article 

    Google Scholar 

  • Bearzi, G. et al. Overfishing and the disappearance of short-beaked common dolphins from western Greece. Endanger. Species Res. 5, 1–12. https://doi.org/10.3354/esr00103 (2008).

    Article 

    Google Scholar 

  • Reeves, R. R., McClellan, K. & Werner, T. B. Marine mammal bycatch in gillnet and other entangling net fisheries, 1990 to 2011. Endanger. Species Res. 20, 71–97. https://doi.org/10.3354/esr00481 (2013).

    Article 

    Google Scholar 

  • van der Hoop, J. M. et al. Vessel strikes to large whales before and after the 2008 Ship Strike Rule. Conserv. Lett. 8, 24–32. https://doi.org/10.1111/conl.12105 (2015).

    Article 

    Google Scholar 

  • Erbe, C., Reichmuth, C., Cunningham, K., Lucke, K. & Dooling, R. Communication masking in marine mammals: A review and research strategy. Mar. Pollut. Bull. 103, 15–38. https://doi.org/10.1016/j.marpolbul.2015.12.007 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • González-But, J. C. & Sepúlveda, M. Captura incidental del delfín común (Delphinus delphis) en la pesquería industrial de cerco, norte de Chile. Rev. Biol. Mar. Oceanogr. 51, 429–433. https://doi.org/10.4067/S0718-19572016000200019 (2016).

    Article 

    Google Scholar 

  • Alvarado-Rybak, M. et al. Pathological findings in cetaceans sporadically stranded along the Chilean Coast. Front. Mar. Sci. 7, 684. https://doi.org/10.3389/fmars.2020.00684 (2020).

    Article 

    Google Scholar 

  • Dans, S. L., Koen, A. M., Pedraza, S. & Crespo, E. A. Incidental catch of dolphins in trawling fisheries off Patagonia, Argentina: Can populations persist?. Ecol. Appl. 13, 754–762. https://doi.org/10.1890/1051-0761(2003)013[0754:ICODIT]2.0.CO;2 (2003).

    Article 

    Google Scholar 

  • Childerhouse S, Baxter A. Human interactions with dusky dolphins: A management perspective, Chapter 12. In The Dusky Dolphin (eds. Würsig, B. & Würsig, M.) 245–275 (Academic Press, 2010). https://doi.org/10.1016/B978-0-12-373723-6.00012-6.

  • Mannocci, L. et al. Assessing the impact of bycatch on dolphin populations: The case of the common dolphin in the Eastern North Atlantic. PLoS One 7, e32615. https://doi.org/10.1371/journal.pone.0032615 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thompson, F. N., Abraham, E. R. & Berkenbusch, K. Common dolphin (Delphinus delphis) Bycatch in New Zealand commercial trawl fisheries. PLoS One 8, e64438. https://doi.org/10.1371/journal.pone.0064438 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Index system of rural human settlement in rural revitalization under the perspective of China

    Donald Sadoway wins European Inventor Award for liquid metal batteries