in

Anthropogenic microparticles in the emerald rockcod Trematomus bernacchii (Nototheniidae) from the Antarctic

  • Barnes, D. K. A., Galgani, F., Thompson, R. C. & Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 1526 (2009).

    Article 

    Google Scholar 

  • Cole, M., Lindeque, P., Halsband, C. & Galloway, T. S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 62, 2588–2597 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Waller, C. L. et al. Microplastics in the Antarctic marine system: An emerging area of research. Sci. Total Environ. 598, 220–227 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fang, C. et al. Microplastic contamination in benthic organisms from the Arctic and sub-Arctic regions. Chemosphere 209, 298–306 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Suaria, G. et al. Floating macro- and microplastics around the Southern Ocean: Results from the Antarctic Circumnavigation Expedition. Environ. Int. 136, 105494 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Stark, J.S., Raymond, T., Deppeler, S.L. & Morrison, A.K. Antarctic Seas in World Seas: An Environmental Evaluation (ed. Sheppard, C.) 44 (Academic Press 2019).

  • Mishra, A. K., Singh, J. & Mishra, P. P. Microplastics in Polar Regions: An early warning to the world’s pristine ecosystem. Sci. Total Environ. 784, 147149 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bargagli, R. Environmental contamination in Antarctic ecosystems. Sci. Total Environ. 400, 212–226 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gregory, M. R., Kirk, R. M. & Mabin, M. C. G. Pelagic tar, oil, plastics and other litter in surface waters of the New Zealand sector of the Southern Ocean, and on Ross Dependancy shores. N. Z. Antarct. Rec. 6, 12–26 (1984).

    Google Scholar 

  • Van Franeker, J. A. & Bell, P. J. Plastic Ingestion by Petrels Breeding in Antarctica. Mar. Poll. Bull. 19(12), 672–674 (1988).

    Article 

    Google Scholar 

  • Harper, P. C. & Fowler, J. A. Plastics pellets in New Zeland storm-killed prions (Pachyptila spp) 1958–1977. Notornis 34, 65–70 (1987).

    Google Scholar 

  • Kelly, A. et al. Microplastic contamination in east Antarctic sea ice. Mar. Poll. Bull. 154, 111130 (2020).

    CAS 
    Article 

    Google Scholar 

  • Gigault, J. et al. Current opinion: What is a nanoplastic?. Environ. Pollut. 235, 1030–1034 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dawson, A. et al. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nat. Commun. 9, 1001 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bergami, E. et al. Plastics everywhere: First evidence of polystyrene fragments inside the common Antarctic collembolan Cryptopygus antarcticus. Biol. Lett. 16, 20200093 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sfriso, A. A. et al. Microplastic accumulation in benthic invertebrates in Terra Nova Bay (Ross Sea, Antarctica). Environ. Int. 137, 105587 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jones-Williams, K. et al. Close encounters—microplastic availability to pelagic amphipods in sub-Antarctic and Antarctic surface waters. Environ. Int. 140, 105792 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bessa, F. et al. Microplastics in gentoo penguins from the Antarctic region. Sci Rep 9, 14191 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Le Guen, C. et al. Microplastic study reveals the presence of natural and synthetic fibres in the diet of King Penguins (Aptenodytes patagonicus) foraging from South Georgia. Environ. Int. 134, 105303 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Fragão, J. et al. Microplastics and other anthropogenic particles in Antarctica: Using penguins as biological samplers. Sci. Total Environ. 20, 788 (2021).

    Google Scholar 

  • International Maritime Organization (IMO), Resolution A. 1087 (28): Guidelines for the Designation of Special Areas under MARPOL, in Assembly, 28th Session, Agenda Item 12, (2013).

  • Waller, C. L. & Hughes, K. A. Plastics in the Southern Ocean. Antarct. 30, 269 (2018).

    Article 

    Google Scholar 

  • Aves, A. R. First evidence of microplastics in Antarctic snow et al. First evidence of microplastics in Antarctic snow. Cryosphere 16, 2127–2145 (2022).

    ADS 
    Article 

    Google Scholar 

  • Vacchi, M., La Mesa, M. & Castelli, A. Diet of two coastal nototheniid fish from Terra Nova Bay, Ross Sea. Antarct. 6, 61–65 (1994).

    Article 

    Google Scholar 

  • Froese, R., & Pauly D. (eds) FishBase. World Wide Web electronic publication—FishBase (September, 2022).

  • La Mesa, M., Dalù, E. M. & Vacchi, M. Trophic ecology of the emerald notothen Trematomus bernacchii (Pisces, Nototheniidae) from Terra Nova Bay, Ross Sea, Antarctica. Polar Biol. 27, 721–728 (2004).

    Article 

    Google Scholar 

  • Lamesa, M., Eastman, J. T. & Vacchi, M. The role of notothenioid fish in the food web of the Ross Sea shelf waters: A review. Polar Biol. 27, 321–338. https://doi.org/10.1007/s00300-004-0599-z (2004).

    Article 

    Google Scholar 

  • Soggia, F., Ianni, C., Magi, E. & Frache, R. Antarctic environmental Specimen Bank in Environmental Contamination in Antarctica, a Challenge to Analytical Chemistry (ed. Caroli, S., Cescon, P., Walton, B.T.) 305–325 (Elsevier, 2001).

  • Anger, P. M. et al. Raman microspectroscopy as a tool for microplastic particle analysis. TrAC Trends Analyt. Chem. 109, 214–226 (2018).

    CAS 
    Article 

    Google Scholar 

  • Savoca, S. et al. Microplastics occurrence in the Tyrrhenian waters and in the gastrointestinal tract of two congener species of seabreams. Environ. Toxicol. Pharmacol. 67, 35–41 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Capillo, G. et al. Quali-quantitative analysis of plastics and synthetic microfibers found in demersal species from Southern Tyrrhenian Sea (Central Mediterranean). Mar. Poll. Bull. 150, 110596 (2020).

    CAS 
    Article 

    Google Scholar 

  • Bottari, T. et al. Plastics occurrence in the gastrointestinal tract of Zeus faber and Lepidopus caudatus from the Tyrrhenian Sea. Mar. Poll. Bull. 146, 408–416 (2019).

    CAS 
    Article 

    Google Scholar 

  • Filgueiras, A. V., Preciado, I., Cartón, A. & Gago, J. Microplastic ingestion by pelagic and benthic fish and diet composition: A case study in the NW Iberian shelf. Mar. Poll. Bull. 160, 111623 (2020).

    CAS 
    Article 

    Google Scholar 

  • Mancuso, M. et al. Investigating the effects of microplastic ingestion in Scyliorhinus canicula from the South of Sicily. Sci. Total Environ. 850, 157875 (2022).

    ADS 
    Article 

    Google Scholar 

  • Savoca, S. et al. Ingestion of plastic and non-plastic microfibers by farmed gilthead sea bream (Sparus aurata) and common carp (Cyprinus carpio) at different life stages. Sci. Total Environ. 782, 146851 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Rodrìguez-Romeu, O. et al. Are anthropogenic fibres a real problem for red mullets (Mullus barbatus) from the NW Mediterranean?. Sci. Total Environ. 733, 139336 (2020).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Bansode, M. A., Eastman, J. T. & Aronson, R. B. Feeding biomechanics of five demersal Antarctic fishes. Polar Biol. 37, 1835–1848. https://doi.org/10.1007/s00300-014-1565-z (2014).

    Article 

    Google Scholar 

  • Munari, C. et al. Microplastics in the sediments of Terra Nova Bay (Ross Sea, Antarctica). Mar. Poll. Bull. 122, 161–165 (2017).

    CAS 
    Article 

    Google Scholar 

  • Cincinelli, A. et al. Microplastic in the surface waters of the Ross Sea (Antarctica): Occurrence, distribution and characterization by FTIR. Chemosphere 175, 391–400 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Eriksson, C. & Burton, H. Origins and biological accumulation of small plastic particles in fur seals from Macquarie Island. Ambio 32, 380–384 (2003).

    PubMed 
    Article 

    Google Scholar 

  • Carr, S. A. Sources and dispersive modes of micro-fibers in the environment. Integr. Environ. Assess. Manag 13(3), 466–469 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gavigan, J. et al. Synthetic microfiber emissions to land rival those to waterbodies and are growing. PLoS ONE 15(9), e0237839 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Manshoven, E. et al. Microplastic pollution from textile consumption in Europe. Eionet Report – ETC/CE 2022/1 (2022).

  • Remy, F. et al. When microplastic is not plastic: The ingestion of artificial cellulose fibers by macrofauna living in seagrass macrophytodetritus. Environ. Sci. Technol. 49, 11158–11166 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Savoca, S. et al. Detection of anthropogenic cellulose microfibers in Boops boops from the northern coasts of Sicily (Central Mediterranean). Sci. Total Environ. 691, 455–465 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Raina, M.A., Gloy, Y.S. & Gries, T. Weaving technologies for manufacturing denim in Denim. Woodhead Publishing Series in Textiles (ed. Paul, R.) 159–187 (2015).

  • Lots, F. A. E. et al. A Large-Scale Investigation of Microplastic Contamination: Abundance and Characteristics of Microplastics in European Beach Sediment. Mar. Pollut. Bull. 123, 219–226 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Athey, S. N. et al. The Widespread Environmental Footprint of Indigo Denim Microfibers from Blue Jeans. Environ. Sci. Technol. Lett. 7, 840–847 (2020).

    CAS 
    Article 

    Google Scholar 

  • Lellis, B. et al. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotech. Res. Inn. 3, 275–290 (2019).

    Article 

    Google Scholar 

  • Sandhya, S. Biodegradation of azodyes under anaerobic condition: Role of azoreductase Biodegradation of azo dyes. The handbook of environmental chemistry (ed. Erkurt ,H.A.) 9, 39–57 (Springer, 2010).

  • Oehlmann, J.R. et al. A critical analysis of the biological impacts of plasticizers on wildlife. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364 (1526), 2047e2062 (2009).

  • Aquino, J. M. et al. Electrochemical degradation of a real textile wastewater using β-PbO2 and DSA® anodes. Chem. Eng. J. 251, 138–145 (2014).

    CAS 
    Article 

    Google Scholar 

  • Newman, M. C. Fundamentals of Ecotoxicology: The Science of Pollution (CRC Press, 2015).

    Google Scholar 

  • Khatri, J., Nidheesh, P. V., Singh, T. A. & Kumar, M. S. Advanced oxidation processes based on zero-valent aluminium for treating textile wastewater. Chem. Eng. J. 348, 67–73 (2018).

    CAS 
    Article 

    Google Scholar 

  • Athey, S. N. & Erdle, L. M. Are we underestimating anthropogenic microfiber pollution? A critical review of occurrence, methods, and reporting. Environ. Tox. Chem. 41, 822–837 (2022).

    CAS 
    Article 

    Google Scholar 

  • Stone, C., Windsor, F. M., Munday, M. & Durance, I. Natural or synthetic – how global trends in textile usage threaten freshwater environments. Sci. Total Environ. 718, 134689 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wright, S. L. & Kelly, F. J. Plastic and human health: A micro issue?. Environ. Sci. Technol. 51, 6634–6647 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ziajahromi, S., Neale, P. A. & Leusch, F. D. Wastewater treatment plant effluent as a source of microplastics: Review of the fate, chemical interactions and potential risks to aquatic organisms. Water Sci. Technol. 74(10), 2253–2269 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Aronson, R. B., Thatje, S., McClintock, J. B. & Hughes, K. A. Anthropogenic impacts on marine ecosystems in Antarctica. Ann. N. Y. Acad. Sci. 1223, 82–1072011 (2011).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Hynes, N. R. J. et al. Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector – A comprehensive review. J. Clean. Prod. 272, 122636 (2020).

    CAS 
    Article 

    Google Scholar 

  • Savoca, S. et al. Plastics occurrence in juveniles of Engraulis encrasicolus and Sardina pilchardus in the Southern Tyrrhenian Sea. Sci Total Environ. 718, 137457 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Galgani, F., Hanke, G., Werner, S. D. V. L. & De Vrees, L. Marine litter within the European marine strategy framework directive. Ices J. Mar. Sci. 70, 1055–1064 (2013).

    Article 

    Google Scholar 

  • Bottari, T. et al. Microplastics in the bogue, Boops boops: A snapshot of the past from the southern Tyrrhenian Sea. J. Hazardous Mat. 424(15), 127669 (2022).

    CAS 
    Article 

    Google Scholar 

  • Pedà, C. et al. Coupling gastro-intestinal tract analysis with an airborne contamination control method to estimate litter ingestion in demersal elasmobranchs. Front. Environ. Sci. 8, 119 (2020).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Studying floods to better predict their dangers

    Marine heatwaves of different magnitudes have contrasting effects on herbivore behaviour