Liu, Z., He, C., Zhou, Y. & Wu, J. How much of the world’s land has been urbanized, really? A hierarchical framework for avoiding confusion. Landsc. Ecol. 29, 763–771 (2014).
The World’s Cities in 2018: Data Booklet (UN, 2018).
Miller, R. W., Hauer, R. J. & Werner, L. P. Urban Forestry: Planning and Managing Urban Greenspaces 3rd edn (Waveland Press, 2015).
Escobedo, F. J., Kroeger, T. & Wagner, J. E. Urban forests and pollution mitigation: analyzing ecosystem services and disservices. Environ. Pollut. 159, 2078–2087 (2011).
Google Scholar
Keeler, B. L. et al. Social-ecological and technological factors moderate the value of urban nature. Nat. Sustain. 2, 29 (2019).
Petri, A. C., Koeser, A. K., Lovell, S. T. & Ingram, D. How green are trees?—using life cycle assessment methods to assess net environmental benefits. J. Environ. Hortic. 34, 101–110 (2016).
Google Scholar
Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
Google Scholar
IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
Van Mantgem, P. J. et al. Widespread increase of tree mortality rates in the western United States. Science 323, 521–524 (2009).
Nowak, D. J. & Greenfield, E. J. Declining urban and community tree cover in the United States. Urban For. Urban Green. 32, 32–55 (2018).
Easterling, D. R. et al. Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074 (2000).
Google Scholar
Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).
Yan, P. & Yang, J. Performances of urban tree species under disturbances in 120 cities in China. Forests 9, 50 (2018).
Hilbert, D., Roman, L., Koeser, A. K., Vogt, J. & Van Doorn, N. S. Urban tree mortality: a literature review. Arboric. Urban For. 45, 167–200 (2019).
Young, R. F. & McPherson, E. G. Governing metropolitan green infrastructure in the United States. Landsc. Urban Plan. 109, 67–75 (2013).
Esperon-Rodriguez, M. et al. Assessing climate risk to support urban forests in a changing climate. Plants People Planet https://doi.org/10.1002/ppp3.10240 (2022).
Esperon-Rodriguez, M. et al. Assessing the vulnerability of Australia’s urban forests to climate extremes. Plants People Planet 1, 387–397 (2019).
Gallagher, R. V., Allen, S. & Wright, I. J. Safety margins and adaptive capacity of vegetation to climate change. Sci. Rep. 9, 8241 (2019).
Bertrand, R. et al. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479, 517–520 (2011).
Google Scholar
Bertrand, R. et al. Ecological constraints increase the climatic debt in forests. Nat. Commun. 7, 12643 (2016).
Richard, B. et al. The climatic debt is growing in the understory of temperate forests: stand characteristics matter. Global Ecol. Biogeogr. 30, 1474–1487 (2021).
IPCC Climate Change 2001: The Scientific Basis (eds Houghton, J. T. et al.) (Cambridge Univ. Press, 2001).
Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C. & Mace, G. M. Beyond predictions: biodiversity conservation in a changing climate. Science 332, 53–58 (2011).
Google Scholar
Foden, W. B. et al. Climate change vulnerability assessment of species. WIREs Clim. Change 10, e551 (2019).
Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–224 (2015).
Reisinger, A. et al. The Concept of Risk in the IPCC Sixth Assessment Report: A Summary of Cross-Working Group Discussions (IPCC, 2020).
Chen, C. et al. University of Notre Dame Global Adaptation Index: Country Index Technical Report (ND-GAIN, 2015).
McPherson, E. G., Berry, A. M. & van Doorn, N. S. Performance testing to identify climate-ready trees. Urban For. Urban Green. 29, 28–39 (2018).
Soberón, J. & Peterson, A. T. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Inform. 2 https://doi.org/10.17161/bi.v2i0.4 (2005).
Pulliam, H. R. On the relationship between niche and distribution. Ecol. Lett. 3, 349–361 (2000).
Ordóñez, C. & Duinker, P. Assessing the vulnerability of urban forests to climate change. Environ. Rev. 22, 311–321 (2014).
Gallagher, R. V., Beaumont, L. J., Hughes, L. & Leishman, M. R. Evidence for climatic niche and biome shifts between native and novel ranges in plant species introduced to Australia. J. Ecol. 98, 790–799 (2010).
Smith, I. A., Dearborn, V. K. & Hutyra, L. R. Live fast, die young: accelerated growth, mortality, and turnover in street trees. PLoS ONE 14, e0215846 (2019).
Hirabayashi, Y., Kanae, S., Emori, S., Oki, T. & Kimoto, M. Global projections of changing risks of floods and droughts in a changing climate. Hydrol. Sci. J. 53, 754–772 (2008).
Van der Veken, S., Hermy, M., Vellend, M., Knapen, A. & Verheyen, K. Garden plants get a head start on climate change. Front. Ecol. Environ. 6, 212–216 (2008).
Ballinas, M. & Barradas, V. L. Transpiration and stomatal conductance as potential mechanisms to mitigate the heat load in Mexico City. Urban For. Urban Green. 20, 152–159 (2016).
Di Baldassarre, G. et al. Water shortages worsened by reservoir effects. Nat. Sustain. 1, 617 (2018).
Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).
Google Scholar
Manoli, G. et al. Magnitude of urban heat islands largely explained by climate and population. Nature 573, 55–60 (2019).
Google Scholar
Kim, D.-H., Doyle, M. R., Sung, S. & Amasino, R. M. Vernalization: winter and the timing of flowering in plants. Annu. Rev. Cell Dev. Biol. 25, 277–299 (2009).
Google Scholar
Kummu, M. & Varis, O. The world by latitudes: a global analysis of human population, development level and environment across the north–south axis over the past half century. Appl. Geogr. 31, 495–507 (2011).
Vogt, J. et al. Citree: a database supporting tree selection for urban areas in temperate climate. Landsc. Urban Plan. 157, 14–25 (2017).
Paquette, A. et al. Praise for diversity: a functional approach to reduce risks in urban forests. Urban For. Urban Green. 62, 127157 (2021).
Esperon-Rodriguez, M. et al. Functional adaptations and trait plasticity of urban trees along a climatic gradient. Urban For. Urban Green. 54, 126771 (2020).
Hirons, A. D. et al. Using botanic gardens and arboreta to help identify urban trees for the future. Plants People Planet 3, 182–193 (2021).
Watkins, H., Hirons, A., Sjöman, H., Cameron, R. & Hitchmough, J. D. Can trait-based schemes be used to select species in urban forestry? Front. Sustain. Cities 3 https://doi.org/10.3389/frsc.2021.654618 (2021).
Populated Places (Natural Earth, accessed 2018); http://www.naturalearthdata.com/downloads/
Ossola, A. et al. The Global Urban Tree Inventory: a database of the diverse tree flora that inhabits the world’s cities. Glob. Ecol. Biogeogr. 29, 1907–1914 (2020).
Sabatini, F., Lenoir, J. & Bruelheide, H. sPlotOpen—An Environmentally-Balanced, Open-Access, Global Dataset of Vegetation Plots (iDiv, 2021); https://doi.org/10.25829/idiv.3474-40-3292
Sabatini, F. M. et al. sPlotOpen—an environmentally balanced, open-access, global dataset of vegetation plots. Global Ecol. Biogeogr. 30, 1740–1764 (2021).
Zizka, A. et al. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751 (2019).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).
Taxonstand: Taxonomic standardization of plant species names. R package version 2.4 https://cran.r-project.org/web/packages/Taxonstand/Taxonstand.pdf (2021).
Kelso, N. & Patterson, T. World Urban Areas, LandScan, 1:10 Million (2012) (North American Cartographic Information Society, 2012).
Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).
O’Donnell, M. S. & Ignizio, D. A. Bioclimatic Predictors for Supporting Ecological Applications in the Conterminous United States (USGS, 2012).
Field, C. et al. IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2014).
Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).
Google Scholar
Zhao, L. et al. Global multi-model projections of local urban climates. Nat. Clim. Change 11, 152–157 (2021).
Huang, K., Li, X., Liu, X. & Seto, K. C. Projecting global urban land expansion and heat island intensification through 2050. Environ. Res. Lett. 14, 114037 (2019).
Alavipanah, S., Wegmann, M., Qureshi, S., Weng, Q. & Koellner, T. The role of vegetation in mitigating urban land surface temperatures: a case study of Munich, Germany during the warm season. Sustainability 7, 4689–4706 (2015).
Corburn, J. Cities, climate change and urban heat island mitigation: localising global environmental science. Urban Stud. 46, 413–427 (2009).
Baston, D., ISciences, L.L., Baston, M.D. Package ‘exactextractr’. terra. R package version 0.8.2 (2022).
Hijmans, R. J. et al. raster: Geographic data analysis and modeling. R package version 2.3-33 http://cran.r-project.org/web/packages/raster/index.html (2016).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Bivand, R. et al. maptools: Tools for handling spatial objects. R package version 08, 23 https://cran.r-project.org/web/packages/maptools/ (2013).
Source: Ecology - nature.com