in

Environment is associated with chytrid infection and skin microbiome richness on an amphibian rich island (Taiwan)

  • McCallum, M. L. Vertebrate biodiversity losses point to a sixth mass extinction. Biodivers. Conserv. 24, 2497–2519 (2015).

    Google Scholar 

  • Wake, D. B. & Vredenburg, V. T. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl. Acad. Sci. 105, 11466–11473. https://doi.org/10.1073/pnas.0801921105 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen?. Science 323, 227. https://doi.org/10.1126/science.1163874 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Pautasso, M., Aas, G., Queloz, V. & Holdenrieder, O. European ash (Fraxinus excelsior) dieback—A conservation biology challenge. Biol. Cons. 158, 37–49 (2013).

    Google Scholar 

  • Daszak, P., Cunningham, A. A. & Hyatt, A. D. Infectious disease and amphibian population declines. Divers. Distrib. 9, 141–150 (2003).

    Google Scholar 

  • Fisher, M. C., Gow, N. A. R. & Gurr, S. J. Tackling emerging fungal threats to animal health, food security and ecosystem resilience. Philos. Trans. R. Soc. B Biol. Sci. https://doi.org/10.1098/rstb.2016.0332 (2016).

    Article 

    Google Scholar 

  • Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Lips, K. R., Reeve, J. D. & Witters, L. R. Ecological traits predicting amphibian population declines in Central America. Conserv. Biol. 17, 1078–1088 (2003).

    Google Scholar 

  • Zipkin, E. F., DiRenzo, G. V., Ray, J. M., Rossman, S. & Lips, K. R. Tropical snake diversity collapses after widespread amphibian loss. Science 367, 814–816. https://doi.org/10.1126/science.aay5733 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Berger, L. et al. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc. Natl. Acad. Sci. 95, 9031–9036 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martel, A. et al. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346, 630–631. https://doi.org/10.1126/science.1258268 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yap, T. A., Koo, M. S., Ambrose, R. F., Wake, D. B. & Vredenburg, V. T. Averting a North American biodiversity crisis. Science 349, 481–482 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Weldon, C., du Preez, L. H., Hyatt, A. D., Muller, R. & Speare, R. Origin of the amphibian chytrid fungus. Emerg. Infect. Dis. 10, 2100–2105 (2004).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Talley, B. L., Muletz, C. R., Vredenburg, V. T., Fleischer, R. C. & Lips, K. R. A century of Batrachochytrium dendrobatidis in Illinois amphibians (1888–1989). Biol. Cons. 182, 254–261 (2015).

    Google Scholar 

  • Rodriguez, D., Becker, C., Pupin, N., Haddad, C. & Zamudio, K. Long-term endemism of two highly divergent lineages of the amphibian-killing fungus in the Atlantic Forest of Brazil. Mol. Ecol. 23, 774–787 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Goka, K. et al. Amphibian chytridiomycosis in Japan: Distribution, haplotypes and possible route of entry into Japan. Mol. Ecol. 18, 4757–4774 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Bataille, A. et al. Genetic evidence for a high diversity and wide distribution of endemic strains of the pathogenic chytrid fungus Batrachochytrium dendrobatidis in wild Asian amphibians. Mol. Ecol. 23, 4196–4209. https://doi.org/10.1111/mec.12385 (2013).

    CAS 
    Article 

    Google Scholar 

  • O’Hanlon, S. J. et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360, 621–627. https://doi.org/10.1126/science.aar1965 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Swei, A. et al. Is chytridiomycosis an emerging infectious disease in Asia?. PLoS ONE 6, e23179 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bai, C. M., Garner, T. W. J. & Li, Y. M. First evidence of Batrachochytrium dendrobatidis in China: Discovery of chytridiomycosis in introduced American bullfrogs and native amphibians in the Yunnan Province, China. EcoHealth 7, 127–134. https://doi.org/10.1007/s10393-010-0307-0 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Yang, H. et al. First detection of the amphibian chytrid fungus Batrachochytrium dendrobatidis in free-ranging populations of amphibians on mainland Asia: Survey in South Korea. Dis. Aquat. Org. 86, 9–13 (2009).

    Google Scholar 

  • Fong, J. J. et al. Early 1900s detection of Batrachochytrium dendrobatidis in Korean amphibians. PLoS ONE 10, e0115656 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kusrini, M., Skerratt, L., Garland, S., Berger, L. & Endarwin, W. Chytridiomycosis in frogs of Mount Gede Pangrango, Indonesia. Diseases Aquat. Organ. 82, 187–194 (2008).

    CAS 

    Google Scholar 

  • Laking, A. E., Ngo, H. N., Pasmans, F., Martel, A. & Nguyen, T. T. Batrachochytrium salamandrivorans is the predominant chytrid fungus in Vietnamese salamanders. Sci. Rep. 7, 44443. https://doi.org/10.1038/srep44443 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, W. et al. A survey for Batrachochytrium salamandrivorans in Chinese amphibians. Curr. Zool. 60, 729–735 (2014).

    Google Scholar 

  • Beukema, W. et al. Environmental context and differences between native and invasive observed niches of Batrachochytrium salamandrivorans affect invasion risk assessments in the Western Palaearctic. Divers. Distrib. 24, 1788–1801. https://doi.org/10.1111/ddi.12795 (2018).

    Article 

    Google Scholar 

  • Auliya, M. et al. The global amphibian trade flows through Europe: The need for enforcing and improving legislation. Biodivers. Conserv. https://doi.org/10.1007/s10531-016-1193-8 (2016).

    Article 

    Google Scholar 

  • Scheffers, B. R., Edwards, D. P., Diesmos, A., Williams, S. E. & Evans, T. A. Microhabitats reduce animal’s exposure to climate extremes. Glob. Change Biol. 20, 495–503 (2014).

    Google Scholar 

  • Schmeller, D. S. et al. People, pollution and pathogens—Global change impacts in mountain freshwater ecosystems. Sci. Total Environ. 622–623, 756–763. https://doi.org/10.1016/j.scitotenv.2017.12.006 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bernardo-Cravo, A., Schmeller, D. S., Chatzinotas, A., Vredenburg, V. T. & Loyau, A. Environmental factors and host microbiomes shape host-pathogen dynamics. Trends Parasitol. 36, 29–36 (2020).

    Google Scholar 

  • Harris, R. N. et al. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J. 3, 818–824. https://doi.org/10.1038/ismej.2009.27 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Harris, R. N., James, T. Y., Lauer, A., Simon, M. A. & Patel, A. Amphibian pathogen Batrachochytrium dendrobatidis is inhibited by the cutaneous bacteria of amphibian species. EcoHealth 3, 53–56. https://doi.org/10.1007/s10393-10005-10009-10391 (2006).

    Article 

    Google Scholar 

  • Piovia-Scott, J. et al. Greater species richness of bacterial skin symbionts better suppresses the amphibian fungal pathogen Batrachochytrium dendrobatidis. Microb. Ecol. 74, 217–226 (2017).

    PubMed 

    Google Scholar 

  • Ellison, S., Knapp, R. A., Sparagon, W., Swei, A. & Vredenburg, V. T. Reduced skin bacterial diversity correlates with increased pathogen infection intensity in an endangered amphibian host. Mol. Ecol. 28, 127–140 (2019).

    PubMed 

    Google Scholar 

  • Jani, A. J. & Briggs, C. J. The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection. Proc. Natl. Acad. Sci. USA 111, E5049-5058. https://doi.org/10.1073/pnas.1412752111 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kueneman, J. G. et al. The amphibian skin-associated microbiome across species, space and life history stages. Mol. Ecol. 23, 1238–1250 (2014).

    PubMed 

    Google Scholar 

  • Kueneman, J. G. Ecology of the Amphibian Skin-Associated Microbiome and Its Role in Pathogen Defense (University of Colorado at Boulder, 2015).

    Google Scholar 

  • Kueneman, J. G. et al. Community richness of amphibian skin bacteria correlates with bioclimate at the global scale. Nat. Ecol. Evolut. 3, 381–389. https://doi.org/10.1038/s41559-019-0798-1 (2019).

    Article 

    Google Scholar 

  • Jiménez, R. R. & Sommer, S. The amphibian microbiome: Natural range of variation, pathogenic dysbiosis, and role in conservation. Biodivers. Conserv. 26, 763–786. https://doi.org/10.1007/s10531-016-1272-x (2017).

    Article 

    Google Scholar 

  • Walke, J. B. et al. Amphibian skin may select for rare environmental microbes. ISME J 8, 2207–2217. https://doi.org/10.1038/ismej.2014.77 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McKenzie, V. J., Bowers, R. M., Fierer, N., Knight, R. & Lauber, C. L. Co-habiting amphibian species harbor unique skin bacterial communities in wild populations. ISME J 6, 588–596. https://doi.org/10.1038/ismej.2011.129 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bates, K. A. et al. Amphibian chytridiomycosis outbreak dynamics are linked with host skin bacterial community structure. Nat. Commun. 9, 693. https://doi.org/10.1038/s41467-018-02967-w (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ellison, S. et al. The influence of habitat and phylogeny on the skin microbiome of amphibians in Guatemala and Mexico. Microb. Ecol. 78, 257–267 (2019).

    PubMed 

    Google Scholar 

  • Fisher, M. C., Pasmans, F. & Martel, A. Virulence and pathogenicity of chytrid fungi causing amphibian extinctions. Annu. Rev. Microbiol. https://doi.org/10.1146/annurev-micro-052621-124212 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Haver, M. et al. The role of abiotic variables in an emerging global amphibian fungal disease in mountains. Sci. Total Environ. 815, 152735 (2021).

    PubMed 

    Google Scholar 

  • Turner, A., Wassens, S., Heard, G. & Peters, A. Temperature as a driver of the pathogenicity and virulence of amphibian chytrid fungus Batrachochytrium dendrobatidis: A systematic review. J. Wildl. Dis. 57, 477–494 (2021).

    PubMed 

    Google Scholar 

  • Woodhams, D., Alford, R., Briggs, C., Johnson, M. & Rollins-Smith, L. Life history trade-offs influence disease in changing climates: Strategies of an amphibian pathogen. Ecology 89, 1627–1639 (2008).

    PubMed 

    Google Scholar 

  • Sonn, J. M., Berman, S. & Richards-Zawacki, C. L. The influence of temperature on chytridiomycosis in vivo. EcoHealth 14, 762–770. https://doi.org/10.1007/s10393-017-1269-2 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Schmidt, B., Küpfer, E., Geiger, C., Wolf, S. & Schär, S. Elevated temperature clears chytrid fungus infections from tadpoles of the midwife toad, Alytes obstetricans. Amphibia-Reptilia 32, 276–280 (2011).

    Google Scholar 

  • Bielby, J., Cooper, N., Cunningham, A. A., Garner, T. W. J. & Purvis, A. Predicting susceptibility to future declines in the world’s frogs. Conserv. Lett. 1, 82–90 (2008).

    Google Scholar 

  • Gray, M. J., Miller, D. L. & Hoverman, J. T. Ecology and pathology of amphibian ranaviruses. Dis. Aquat. Org. 87, 243–266 (2009).

    Google Scholar 

  • Murray, K., Skerratt, L., Speare, R. & McCallum, H. Impact and dynamics of disease in species threatened by the amphibian chytrid fungus, Batrachochytrium dendrobatidis. Conserv. Biol. 23, 1242–1252 (2009).

    PubMed 

    Google Scholar 

  • Schmeller, D. S. et al. Microscopic aquatic predators strongly affect infection dynamics of a globally emerged pathogen. Curr. Biol. 24, 176–180. https://doi.org/10.1016/j.cub.2013.11.032 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Metzger, M. J. et al. Environmental stratifications as the basis for national, European and global ecological monitoring. Ecol. Ind. 33, 26–35. https://doi.org/10.1016/j.ecolind.2012.11.009 (2013).

    Article 

    Google Scholar 

  • Metzger, M. J. et al. A high-resolution bioclimate map of the world: A unifying framework for global biodiversity research and monitoring. Glob. Ecol. Biogeogr. 22, 630–638. https://doi.org/10.1111/geb.12022 (2013).

    Article 

    Google Scholar 

  • Clare, F., Daniel, O., Garner, T. & Fisher, M. Assessing the ability of swab data to determine the true burden of infection for the amphibian pathogen Batrachochytrium dendrobatidis. EcoHealth 13, 360–367. https://doi.org/10.1007/s10393-016-1114-z (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, T. L., Rovito, S. M., Wake, D. B. & Vredenburg, V. T. Coincident mass extirpation of neotropical amphibians with the emergence of the infectious fungal pathogen Batrachochytrium dendrobatidis. Proc. Natl. Acad. Sci. 108, 9502–9507 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vredenburg, V. T. et al. Pathogen invasion history elucidates contemporary host pathogen dynamics. PLoS ONE 14, e0219981. https://doi.org/10.1371/journal.pone.0219981 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hyatt, A. D. et al. Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis. Aquat. Org. 73, 175–192 (2007).

    CAS 

    Google Scholar 

  • Blooi, M. et al. Duplex real-time PCR for rapid simultaneous detection of Batrachochytrium dendrobatidis and B. salamandrivorans in amphibian samples. J. Clin. Microbiol. 51, 4173–4177 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boyle, D. G., Boyle, D. B., Olsen, V., Morgan, J. A. T. & Hyatt, A. D. Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis. Aquat. Org. 60, 141–148 (2004).

    CAS 

    Google Scholar 

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

    Google Scholar 

  • Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pruesse, E., Peplies, J. & Glöckner, F. O. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bokulich, N. A. & Mills, D. A. Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Appl. Environ. Microbiol. https://doi.org/10.1128/aem.03870-12 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McMurdie, P. J. & Holmes, S. Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191. https://doi.org/10.1038/sdata.2017.191 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wells, N., Goddard, S. & Hayes, M. J. A self-calibrating Palmer Drought Severity Index. J. Clim. 17, 2335–2351 (2004).

    Google Scholar 

  • Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60. https://doi.org/10.1186/gb-2011-12-6-r60 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fisher, M. C. et al. RACE: Risk assessment of chytridiomycosis to European Amphibian Biodiversity. Froglog 101, 45–47 (2012).

    Google Scholar 


  • Source: Ecology - nature.com

    Processing waste biomass to reduce airborne emissions

    Professor Emeritus Richard “Dick” Eckaus, who specialized in development economics, dies at 96