Rocchini, D. et al. Measuring β-diversity by remote sensing: A challenge for biodiversity monitoring. Methods Ecol. Evol. 9(8), 1787–1798 (2018).
Google Scholar
Pettorelli, N. et al. Satellite remote sensing of ecosystem functions: Opportunities, challenges and way forward. Remote Sensing in Ecology and Conservation 4(2), 71–93 (2018).
Google Scholar
Corbane, C. et al. Remote sensing for mapping natural habitats and their conservation status–New opportunities and challenges. Int. J. Appl. Earth Obs. Geoinf. 37, 7–16 (2015).
Google Scholar
Miu, I. V. et al. Identification of areas of very high biodiversity value to achieve the EU Biodiversity Strategy for 2030 key commitments. PeerJ 8, e10067 (2020).
Google Scholar
De Klerk, H., Burgess, N. & Visser, V. Probabilistic description of vegetation ecotones using remote sensing. Eco. Inform. 46, 125–132 (2018).
Google Scholar
Minasny, B. et al. Digital mapping of peatlands–A critical review. Earth Sci. Rev. 196, 102870 (2019).
Google Scholar
Zellweger, F. et al. Advances in microclimate ecology arising from remote sensing. Trends Ecol. Evol. 34(4), 327–341 (2019).
Google Scholar
Zhang, X. et al. New research methods for vegetation information extraction based on visible light remote sensing images from an unmanned aerial vehicle (UAV). Int. J. Appl. Earth Obs. Geoinf. 78, 215–226 (2019).
Google Scholar
Ullerud, H. A. et al. Consistency in land-cover mapping: Influence of field workers, spatial scale and classification system. Appl. Veg. Sci. 21(2), 278–288 (2018).
Google Scholar
Zhu, Y. et al. Effects of data temporal resolution on phenology extractions from the alpine grasslands of the Tibetan Plateau. Ecol. Ind. 104, 365–377 (2019).
Google Scholar
Huylenbroeck, L. et al. Using remote sensing to characterize riparian vegetation: A review of available tools and perspectives for managers. J. Environ. Manage. 267, 110652 (2020).
Google Scholar
Fagan, M. E. et al. Mapping species composition of forests and tree plantations in Northeastern Costa Rica with an integration of hyperspectral and multitemporal Landsat imagery. Remote Sensing 7(5), 5660–5696 (2015).
Google Scholar
Waśniewski, A. et al. Assessment of Sentinel-2 satellite images and random forest classifier for rainforest mapping in Gabon. Forests 11(9), 941 (2020).
Google Scholar
Drusch, M. et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 120, 25–36 (2012).
Google Scholar
Chytrý, M. et al. European Vegetation Archive (EVA): An integrated database of European vegetation plots. Appl. Veg. Sci. 19(1), 173–180 (2016).
Google Scholar
Chytrý, M. et al. EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats. Appl. Veg. Sci. 23(4), 648–675 (2020).
Google Scholar
Šibík, J. Slovak vegetation database. In Dengler J., Oldeland, J., Jansen, F., Chytrý, M., Ewald, J., Finckh, M., Glöckle, RF, Lopez-Gonzalez, G., Peet, R. K. & Schaminée, J. H. J. (eds), Vegetation databases for the 21st century. Biodiversity & Ecology, 2012: p. 429–429.
Jarolímek, I., et al. A list of vegetation units of Slovakia. Diagnostic, constant and dominant species of the higher vegetation units of Slovakia. Veda, Bratislava, 2008: p. 295–329.
Stanová, V. & Valachovič, M. Katalóg biotopov Slovenska [A catalogue of biotopes of Slovakia] (DAPHNE-Institút aplikovanej ekológie, 2002).
Viceníková, A. & Polák, P. Európsky významné biotopy na Slovensku (Štátna ochrana prírody SR v spolupráci s DAPHNE-Inštitút aplikovanej ekológie, 2003).
Dymond, C. C., Mladenoff, D. J. & Radeloff, V. C. Phenological differences in Tasseled Cap indices improve deciduous forest classification. Remote Sens. Environ. 80(3), 460–472 (2002).
Google Scholar
Mickelson, J. G., Civco, D. L. & Silander, J. Delineating forest canopy species in the northeastern United States using multi-temporal TM imagery. Photogramm. Eng. Remote. Sens. 64, 891–904 (1998).
Nitze, I., Barrett, B. & Cawkwell, F. Temporal optimisation of image acquisition for land cover classification with Random Forest and MODIS time-series. Int. J. Appl. Earth Obs. Geoinf. 34, 136–146 (2015).
Google Scholar
Prishchepov, A. V. et al. The effect of Landsat ETM/ETM+ image acquisition dates on the detection of agricultural land abandonment in Eastern Europe. Remote Sens. Environ. 126, 195–209 (2012).
Google Scholar
Saini, M. et al. Hyperspectral data dimensionality reduction and the impact of multi-seasonal Hyperion EO-1 imagery on classification accuracies of tropical forest species. Photogramm. Eng. Remote. Sens. 80(8), 773–784 (2014).
Google Scholar
Wang, L., Silván-Cárdenas, J. L. & Sousa, W. P. Neural network classification of mangrove species from multi-seasonal Ikonos imagery. Photogramm. Eng. Remote. Sens. 74(7), 921–927 (2008).
Google Scholar
Dong, J. et al. Mapping tropical forests and rubber plantations in complex landscapes by integrating PALSAR and MODIS imagery. ISPRS J. Photogramm. Remote. Sens. 74, 20–33 (2012).
Google Scholar
Fan, H. et al. Phenology-based vegetation index differencing for mapping of rubber plantations using Landsat OLI data. Remote Sens. 7(5), 6041–6058 (2015).
Google Scholar
Li, Z. & Fox, J. M. Mapping rubber tree growth in mainland Southeast Asia using time-series MODIS 250 m NDVI and statistical data. Appl. Geogr. 32(2), 420–432 (2012).
Google Scholar
Senf, C. et al. Mapping rubber plantations and natural forests in Xishuangbanna (Southwest China) using multi-spectral phenological metrics from MODIS time series. Remote Sens. 5(6), 2795–2812 (2013).
Google Scholar
Mikula, K. et al. NaturaSat—A software tool for identification, monitoring and evaluation of habitats by remote sensing techniques. Remote Sens. 13(17), 3381 (2021).
Google Scholar
Mikula, K. et al. Semi-automatic segmentation of NATURA 2000 habitats in Sentinel-2 satellite images by evolving open curves. Discrete Contin. Dyn. Syst. S 14(3), 1033 (2021).
Google Scholar
Mikula, K. et al. An automated segmentation of NATURA 2000 habitats from Sentinel-2 optical data. Discrete Contin. Dyn. Syst. S 14(3), 1017 (2021).
Google Scholar
Klinec, A., Geologická mapa Slovenského rudohoria a Nízkych Tatier (1: 50 000). GÚDŠ, Bratislava, 1976.
Lapin, M., et al., Klimatické oblasti [Climatic regions]. Atlas krajiny Slovenskej republiky, 2002. 95.
Slamova, M. et al. Historical terraces—Current situation and future perspectives for optimal land use management: The case study of Čierny Balog. Annales 29(1), 85–100 (2019).
Geoportal, 2021. https://www.geoportal.sk/sk/geoportal.html. Accessed 22 Feb 2021.
Directive, H. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off. J. Eur. Union 206, 7–50 (1992).
Barkman, J. J., Doing, H. & Segal, S. Kritische bemerkungen und vorschläge zur quantitativen vegetationsanalyse. Acta Bot. Neerland. 13(3), 394–419 (1964).
Google Scholar
Braun-Blanquet, J. & Pflanzensoziologie, G.d.V. (Springer, Wien, New York, 1964).
Westhoff, V. & van der Maarel, E. The Braun-Blanquet approach. In Classification of Plant Communities (ed. Whittaker, R. H.) (Springer, 1973).
Hennekens, S. M. & Schaminée, J. H. TURBOVEG, a comprehensive data base management system for vegetation data. J. Veg. Sci. 12(4), 589–591 (2001).
Google Scholar
Tichý, L. JUICE, software for vegetation classification. J. Veg. Sci. 13(3), 451–453 (2002).
Google Scholar
Marhold, K., et al., A list of lower and higher plants of Slovakia. Vydavateľstvo akadémie vied, Bratislava, 1998.
Ambroz, M., Kollár, M., & Mikula, K. Semi-implicit scheme for semi-automatic segmentation in Naturasat software. In Proceedings of ALGORITMY (2020).
LGIS, 2020. LGIS Lesnícky geografický informačný system (2020). http://gis.nlcsk.org/lgis/. Accessed 1 Sept 2020.
Hill, M. TWINSPAN-a FORTRAN program for multivariate data in an ordered two-way table by classification of the individuals and attributes. Ecol. System. (1979).
Team, R.C., A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2014. www.r-project.org. Accessed 14 Feb 2019, 2020.
Hausdorff, F., Grundzüge der mengenlehre. Vol. 7. 1914: von Veit.
Waghmare, B. & Suryawanshi, M. A review-remote sensing. Int. J. Eng. Res. Appl 7(06), 52–54 (2017).
Wagner, M. P. & Oppelt, N. Extracting agricultural fields from remote sensing imagery using graph-based growing contours. Remote Sens. 12(7), 1205 (2020).
Google Scholar
Reinermann, S., Asam, S. & Kuenzer, C. Remote sensing of grassland production and management—A review. Remote Sens. 12(12), 1949 (2020).
Google Scholar
Lu, M. et al. Forest types classification based on multi-source data fusion. Remote Sens. 9(11), 1153 (2017).
Google Scholar
Zwiggelaar, R. A review of spectral properties of plants and their potential use for crop/weed discrimination in row-crops. Crop Prot. 17(3), 189–206 (1998).
Google Scholar
Lamb, D. & Brown, R. B. Pa—precision agriculture: Remote-sensing and mapping of weeds in crops. J. Agric. Eng. Res. 78(2), 117–125 (2001).
Google Scholar
Moran, M. S., Inoue, Y. & Barnes, E. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens. Environ. 61(3), 319–346 (1997).
Google Scholar
Senf, C., Seidl, R. & Hostert, P. Remote sensing of forest insect disturbances: Current state and future directions. Int. J. Appl. Earth Obs. Geoinf. 60, 49–60 (2017).
Google Scholar
Avtar, R. et al. Assessing sustainable development prospects through remote sensing: A review. Remote Sens. Appl. Soc. Environ. 20, 100402 (2020).
Borre, J. V. et al. Integrating remote sensing in Natura 2000 habitat monitoring: Prospects on the way forward. J. Nat. Conserv. 19(2), 116–125 (2011).
Google Scholar
Woodcock, C. E. et al. Transitioning from change detection to monitoring with remote sensing: A paradigm shift. Remote Sens. Environ. 238, 111558 (2020).
Google Scholar
Foody, G. Fuzzy modelling of vegetation from remotely sensed imagery. Ecol. Model. 85(1), 3–12 (1996).
Google Scholar
Nagendra, H. Using remote sensing to assess biodiversity. Int. J. Remote Sens. 22(12), 2377–2400 (2001).
Google Scholar
Zlinszky, A. et al. Mapping Natura 2000 habitat conservation status in a pannonic salt steppe with airborne laser scanning. Remote Sens. 7(3), 2991–3019 (2015).
Google Scholar
Feilhauer, H. et al. Mapping the local variability of Natura 2000 habitats with remote sensing. Appl. Veg. Sci. 17(4), 765–779 (2014).
Google Scholar
Thanh Noi, P. & Kappas, M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors 18(1), 18 (2017).
Google Scholar
Da Ponte, E. et al. Assessing forest cover dynamics and forest perception in the Atlantic Forest of Paraguay, combining remote sensing and household level data. Forests 8(10), 389 (2017).
Google Scholar
Cheng, K. & Wang, J. Forest type classification based on integrated spectral-spatial-temporal features and random forest algorithm—A case study in the qinling mountains. Forests 10(7), 559 (2019).
Google Scholar
Laurin, G. V. et al. Discrimination of tropical forest types, dominant species, and mapping of functional guilds by hyperspectral and simulated multispectral Sentinel-2 data. Remote Sens. Environ. 176, 163–176 (2016).
Google Scholar
Erinjery, J. J., Singh, M. & Kent, R. Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. Remote Sens. Environ. 216, 345–354 (2018).
Google Scholar
Navarro, J. A. et al. Integration of UAV, Sentinel-1, and Sentinel-2 data for mangrove plantation aboveground biomass monitoring in Senegal. Remote Sens. 11(1), 77 (2019).
Google Scholar
Sothe, C. et al. Evaluating Sentinel-2 and Landsat-8 data to map sucessional forest stages in a subtropical forest in Southern Brazil. Remote Sens. 9(8), 838 (2017).
Google Scholar
Mikula, K., et al., Natural Numerical Networks for Natura 2000 habitats classification by satellite images. arXiv preprint arXiv:2108.04327, 2021.
Bruelheide, H. et al. sPlot—A new tool for global vegetation analyses. J. Veg. Sci. 30(2), 161–186 (2019).
Google Scholar
Source: Ecology - nature.com