Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic. 2008;8:1–13.
Google Scholar
Jechalke S, Heuer H, Siemens J, Amelung W, Smalla K. Fate and effects of veterinary antibiotics in soil. Trends Microbiol. 2014;22:536–45. Available from: https://doi.org/10.1016/j.tim.2014.05.005.
Google Scholar
Kalasseril S, Paul R, J RK V, Pillai D. Investigating the impact of hospital antibiotic usage on aquatic environment and aquaculture systems: A molecular study of quinolone resistance in Escherichia coli. Sci Total Environ. 2020;748:141538. Available from: https://doi.org/10.1016/j.scitotenv.2020.141538.
Google Scholar
Ashbolt NJ. Human Health Risk Assessment (HHRA) for Environmental Development and Transfer of Antibiotic Resistance. Environ Health Perspect. 2013;121:993–1002.
Google Scholar
Bengtsson-Palme J, Kristiansson E, Larsson DGJ Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol Rev. 2017;(October 2017):68–80. Available from: http://academic.oup.com/femsre/advance-article/doi/10.1093/femsre/fux053/4563583
Manaia CM Assessing the Risk of Antibiotic Resistance Transmission from the Environment to Humans: Non-Direct Proportionality between Abundance and Risk. Vol. 25, Trends in Microbiology. 2017.
Manaia CM, Macedo G, Fatta-Kassinos D, Nunes OC. Antibiotic resistance in urban aquatic environments: can it be controlled? Appl Microbiol Biotechnol. 2016;100:1543–57.
Google Scholar
Durso LM, Cook KL. Impacts of antibiotic use in agriculture: what are the benefits and risks? Curr Opin Microbiol. 2014;19:37–44. https://doi.org/10.1016/j.mib.2014.05.019. Available from
Google Scholar
Almakki A, Jumas-Bilak E, Marchandin H, Licznar-Fajardo P. Antibiotic resistance in urban runoff. Sci Total Environ. 2019;667:64–76. https://linkinghub.elsevier.com/retrieve/pii/S0048969719306710.
Google Scholar
Andersson DI, Hughes D. Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol. 2014;12:465–78. Available from: https://doi.org/10.1038/nrmicro3270.
Google Scholar
Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, et al. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 2011;7:1–9.
Google Scholar
Murray AK, Zhang L, Yin X, Zhang T, Buckling A, Snape J, et al. Novel insights into selection for antibiotic resistance in complex microbial communities. MBio. 2018;9:1–12. http://mbio.asm.org/lookup/doi/10.1128/mBio.00969-18.
Google Scholar
Chow L, Waldron L, Gillings MR. Potential impacts of aquatic pollutants: sub-clinical antibiotic concentrations induce genome changes and promote antibiotic resistance. Front Microbiol. 2015;6:1–10.
Bruchmann J, Kirchen S, Schwartz T. Sub-inhibitory concentrations of antibiotics and wastewater influencing biofilm formation and gene expression of multi-resistant Pseudomonas aeruginosa wastewater isolates. Environ Sci Pollut Res. 2013;20:3539–49.
Google Scholar
Gullberg E, Albrecht LM, Karlsson C, Sandegren L, Andersson DI. Selection of a Multidrug Resistance Plasmid by Sublethal Levels of Antibiotics and Heavy Metals. mBio. 2014;5:19–23.
Google Scholar
Choung S, Yun Z, Kwon EE, Cho Y, Ha U-H, Oh J, et al. Transfer of antibiotic resistance plasmids in pure and activated sludge cultures in the presence of environmentally representative micro-contaminant concentrations. Sci Total Environ. 2014;468–469:813–20. https://doi.org/10.1016/j.scitotenv.2013.08.100.
Google Scholar
Shun-Mei E, Zeng JM, Yuan H, Lu Y, Cai RX, Chen C. Sub-inhibitory concentrations of fluoroquinolones increase conjugation frequency. Microb Pathog. 2018;114:57–62.
Google Scholar
Jutkina J, Rutgersson C, Flach CF, Joakim Larsson DG. An assay for determining minimal concentrations of antibiotics that drive horizontal transfer of resistance. Sci Total Environ. 2016;548–549:131–8. https://doi.org/10.1016/j.scitotenv.2016.01.044.
Google Scholar
Jutkina J, Marathe NP, Flach CF, Larsson DGJ. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations. Sci Total Environ. 2018;616–617:172–8. https://doi.org/10.1016/j.scitotenv.2017.10.312.
Google Scholar
Murray AK, Zhang L, Yin X, Zhang T, Buckling A, Snape J, et al. Novel insights into selection for antibiotic resistance in complex microbial communities. MBio. 2018;9:1–12.
Google Scholar
Le-minh N, Khan SJ, Drewes JE, Stuetz RM. Fate of antibiotics during municipal water recycling treatment processes. Water Res. 2010;44:4295–323. https://doi.org/10.1016/j.watres.2010.06.020.
Google Scholar
George J, Halami PM. Sub-inhibitory concentrations of gentamicin triggers the expression of aac(6′)Ie-aph(2″)Ia, chaperons and biofilm related genes in Lactobacillus plantarum MCC 3011. Res Microbiol. 2017;168:722–31. https://doi.org/10.1016/j.resmic.2017.06.002.
Google Scholar
Zhang AN, Li LG, Ma L, Gillings MR, Tiedje JM, Zhang T. Conserved phylogenetic distribution and limited antibiotic resistance of class 1 integrons revealed by assessing the bacterial genome and plasmid collection. Microbiome. 2018;6:1–14.
Google Scholar
Gillings MR. Integrons: Past, Present, and Future. Microbiol Mol Biol Rev. 2014;78:257–77.
Google Scholar
Guironnet A, Sanchez-Cid C, Vogel TM, Wiest L, Vulliet E Aminoglycosides analysis optimization using Ion pairing Liquid Chromatography coupled to tandem Mass Spectrometry and application on wastewater samples. J Chromatogr. 2021;1651.
Muyzer G, Hottentrager S, Teske A, Wawer C Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA—a new molecular approach to analyse the genetic diversity of mixed microbial communities. In: Akkermans A, van Elsas J, de Bruijn F, editors. Molecular microbial ecology manual. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1995. p. 1–23.
Watanabe K, Kodama Y, Harayama S. Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J Microbiol Methods. 2001;44:253–62.
Google Scholar
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:1–11.
Google Scholar
Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics. 2012;13:31 http://www.biomedcentral.com/1471-2105/13/31.
Google Scholar
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.
Google Scholar
Holmes AJ, Gillings MR, Nield BS, Mabbutt BC, Nevalainen KMH, Stokes HW. The gene cassette metagenome is a basic resource for bacterial genome evolution. Environ Microbiol. 2003;5:383–94.
Google Scholar
Gillings MR, Xuejun D, Hardwick SA, Holley MP, Stokes HW. Gene cassettes encoding resistance to quaternary ammonium compounds: a role in the origin of clinical class 1 integrons? ISME J. 2009;3:209–15.
Google Scholar
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.
Google Scholar
Minoche AE, Dohm JC, Himmelbauer H Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and Genome Analyzer systems. Genome Biol. 2011;12.
Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13:1–22.
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. Available from: https://doi.org/10.1038/nmeth.1923.
Google Scholar
Eren AM, Esen OC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: An advanced analysis and visualization platformfor’omics data. PeerJ. 2015;2015:1–29.
Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48:D517–25.
Google Scholar
Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.
Google Scholar
Menzel P, Ng KL, Krogh A Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7.
Ramirez SM, Tolmasky EM. Aminoglycoside modifing enzymes. Drug Resist Updat. 2011;13:151–71. Available from: https://doi.org/10.1016/j.drup.2010.08.003.
Google Scholar
Ben Y, Fu C, Hu M, Liu L, Wong MH, Zheng C. Human Health Risk Assessment of Antibiotic Resistance Associated with Antibiotic Residues in the Environment: A Review. Environ Res. 2018;169:483–93. https://www.sciencedirect.com/science/article/pii/S0013935118304298.
Google Scholar
Bengtsson-Palme J, Larsson DGJ. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environ Int. 2016;86:140–9. https://doi.org/10.1016/j.envint.2015.10.015.
Google Scholar
Sultan I, Rahman S, Jan AT, Siddiqui MT, Mondal AH, Haq QMR Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective. Front Microbiol. 2018;9(September). Available from: https://www.frontiersin.org/article/10.3389/fmicb.2018.02066/full
Casin I, Bordon F, Bertin P, Coutrot A, Podglajen I, Brasseur R, et al. Aminoglycoside 6’-N-acetyltransferase variants of the Ib type with altered substrate profile in clinical isolates of Enterobacter cloacae and Citrobacter freundii. Antimicrob Agents Chemother. 1998;42:209–15.
Google Scholar
Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, et al. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol. 2015;13:310–7.
Google Scholar
Chow LKM, Ghaly TM, Gillings MR. A survey of sub-inhibitory concentrations of antibiotics in the environment. J Environ Sci (China). 2021;99:21–7. https://doi.org/10.1016/j.jes.2020.05.030.
Google Scholar
Gillings MR. Class 1 integrons as invasive species. Curr Opin Microbiol. 2017;38:10–5. https://doi.org/10.1016/j.mib.2017.03.002.
Google Scholar
Ma L, Li AD, Yin XL, Zhang T. The prevalence of integrons as the carrier of antibiotic resistance genes in natural and man-made environments. Environ Sci Technol. 2017;51:5721–8.
Google Scholar
Gillings M, Boucher Y, Labbate M, Holmes A, Krishnan S, Holley M, et al. The evolution of class 1 integrons and the rise of antibiotic resistance. J Bacteriol. 2008;190:5095–100.
Google Scholar
Bürgmann H, Frigon D, Gaze WH, Manaia CM, Pruden A, Singer AC, et al. Water and sanitation: An essential battlefront in the war on antimicrobial resistance. FEMS Microbiol Ecol. 2018;94.
Pena-Miller R, Laehnemann D, Jansen G, Fuentes-Hernandez A, Rosenstiel P, Schulenburg H, et al. When the most potent combination of antibiotics selects for the greatest bacterial load: the smile-frown transition. PLoS Biol. 2013;11:14–6.
Google Scholar
Source: Ecology - nature.com