von Humboldt, A., and A. Bonpland. Essai sur la geographiedes plantes. Chez Levrault, Schoell et Campagnie, Libraries, Paris.(1805).
Malhi, Y. et al. Introduction: elevation gradients in the tropics: laboratories for ecosystem ecology and global change research. Glob. Change Biol. 16, 3171–3175 (2010).
Google Scholar
Nottingham, A. T. et al. Climate warming and soil carbon in tropical forests: insights from an elevation gradient in the Peruvian Andes. BioScience 65, 906–921 (2015).
Google Scholar
Malhi, Y. et al. The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. N. Phytologist 214, 1019–1032 (2017).
Google Scholar
Nottingham, A. T. et al. Soil microbial nutrient constraints along a tropical forest elevation gradient: a belowground test of a biogeochemical paradigm. Biogeosciences 12, 6071–6083 (2015).
Google Scholar
Nottingham, A. T. et al. Microbes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes. Ecology 99, 2455–2466 (2018).
Google Scholar
Jenny, H., Bingham, F. & Padillasaravia, B. Nitrogen and organic matter contents of equatorial soils of Colombia, South-America. Soil Sci. 66, 173–186 (1948).
Google Scholar
Tanner, E., Vitousek, P. & Cuevas, E. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79, 10–22 (1998).
Google Scholar
Vitousek, P. M., Matson, P. A. & Turner, D. R. Elevational and age gradients in Hawaiian montane rainforest: foliar and soil nutrients. Oecologia 77, 565–570 (1988).
Google Scholar
Vitousek, P. M. & Sanford, R. L. Nutrient cycling in moist tropical forest. Annu. Rev. Ecol. Syst. 17, 137–167 (1986).
Google Scholar
Krishnaswamy, J., John, R. & Joseph, S. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions. Glob. Change Biol. 20, 203–215 (2014).
Google Scholar
Duque, A. et al. Mature Andean forests as globally important carbon sinks and future carbon refuges. Nat. Commun. 12, 2138 (2021).
Google Scholar
Fadrique, B. et al. Widespread but heterogeneous responses of Andean forests to climate change. Nature 564, 207–212 (2018).
Google Scholar
Nottingham, A. T. et al. Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient. Ecol. Lett. 22, 1889–1899 (2019).
Google Scholar
Marrs, R. H., Proctor, J., Heaney, A. & Mountford, M. D. Changes in soil nitrogen-mineralization and nitrification along an altitudinal transect in tropical rain forest in Costa Rica. J. Ecol. 76, 466–482 (1988).
Grubb, P. J. Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annu. Rev. Ecol. Syst. 8, 83–107 (1977).
Google Scholar
Wolf, K., Veldkamp, E., Homeier, J. & Martinson, G. O. Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador. Glob. Biogeochem. Cycles 25, GB4009 (2011).
Barthel, M. et al. Low N2O and variable CH4 fluxes from tropical forest soils of the Congo Basin. Nat. Commun. 13, 330 (2022).
Google Scholar
Brookshire, E. N. J., Hedin, L. O., Newbold, J. D., Sigman, D. M. & Jackson, J. K. Sustained losses of bioavailable nitrogen from montane tropical forests. Nat. Geosci. 5, 123–126 (2012).
Google Scholar
Rütting, T. et al. Leaky nitrogen cycle in pristine African montane rainforest soil. Glob. Biogeochem. Cycles 29, 1754–1762 (2015).
Google Scholar
Batjes, N. H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 47, 151–163 (1996).
Google Scholar
Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).
Google Scholar
Poggio, L. et al. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. SOIL 7, 217–240 (2021).
Google Scholar
Bauters, M. et al. Parallel functional and stoichiometric trait shifts in South American and African forest communities with elevation. Biogeosciences 14, 5313–5321 (2017).
Google Scholar
Dalling, J. W., Heineman, K., González, G. & Ostertag, R. Geographic, environmental and biotic sources of variation in the nutrient relations of tropical montane forests. J. Tropical Ecol. 32, 368–383 (2016).
Google Scholar
Porder, S., Vitousek, P., Chadwick, O., Chamberlain, C. & Hilley, G. Uplift, erosion, and phosphorus limitation in terrestrial ecosystems. Ecosystems 10, 158–170 (2007).
Google Scholar
Houlton, B. Z., Morford, S. L. & Dahlgren, R. A. Convergent evidence for widespread rock nitrogen sources in Earth’s surface environment. Science 360, 58–62 (2018).
Google Scholar
Hilton, R. G., Galy, A., West, A. J., Hovius, N. & Roberts, G. G. Geomorphic control on the delta N-15 of mountain forests. Biogeosciences 10, 1693–1705 (2013).
Google Scholar
Vitousek, P. M., Van Cleve, K., Balakrishnan, N. & Mueller-Dombois, D. Soil development and nitrogen turnover in montane rainforest soils on Hawai’i. Biotropica 268–274 (1983).
Taylor, P. G. et al. Temperature and rainfall interact to control carbon cycling in tropical forests. Ecol. Lett. 20, 779–788 (2017).
Google Scholar
Houlton, B. & Bai, E. Imprint of denitrifying bacteria on the global terrestrial biosphere. Proc. Natl Acad. Sci. USA 106, 21713–21716 (2009).
Google Scholar
Shi, Z. et al. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559 (2020).
Google Scholar
Craine, J. M. et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant and Soil 396, 1–26 (2015).
Högberg, P. Tansley Review No. 95. 15N Natural Abundance in Soil-Plant Systems. N. Phytologist 137, 179–203 (1997).
Google Scholar
Martinelli, L. et al. Nitrogen stable isotopic composition of leaves and soil: Tropical versus temperate forests. Biogeochemistry 46, 45–65 (1999).
Google Scholar
Amundson, R. et al. Global patterns of the isotopic composition of soil and plant nitrogen. Glob. Biogeochem. Cycles 17, (2003).
Craine, J. M. et al. Convergence of soil nitrogen isotopes across global climate gradients. Sci. Rep. 5, 8280 (2015).
Mooshammer, M. et al. Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nat. Commun. 5, 3694 (2014).
Camenzind, T., Hättenschwiler, S., Treseder, K. K., Lehmann, A. & Rillig, M. C. Nutrient limitation of soil microbial processes in tropical forests. Ecol. Monogr. 88, 4–21 (2018).
Google Scholar
Mariotti, A., Pierre, D., Vedy, J. C., Bruckert, S. & Guillemot, J. The abundance of natural nitrogen 15 in the organic matter of soils along an altitudinal gradient (Chablais, Haute Savoie, France). Catena 7, 293–300 (1980).
Google Scholar
Sena‐Souza, J. P., Houlton, B. Z., Martinelli, L. A. & Nardoto, G. B. Reconstructing continental-scale variation in soil δ15N: a machine learning approach in South America. Ecosphere 11, e03223 (2020).
Google Scholar
Nottingham, A. T., Bååth E., Reischke, S., Salinas, N. & Meir, P. Adaptation of soil microbial growth to temperature: Using a tropical elevation gradient to predict future changes. Glob. change Biol. 25, 827–838 (2019).
Liu, Y. et al. A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization: latitudinal patterns and mechanisms. Glob. Change Biol. 23, 455–464 (2017).
Google Scholar
Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).
Google Scholar
Zimmermann, M. & Bird, M. I. Temperature sensitivity of tropical forest soil respiration increase along an altitudinal gradient with ongoing decomposition. Geoderma 187–188, 8–15 (2012).
Google Scholar
Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Change Biol. 17, 798–818 (2011).
Google Scholar
Wright, S. J. Plant responses to nutrient addition experiments conducted in tropical forests. Ecol. Monogr. 89, e01382 (2019).
Google Scholar
Brookshire, E. N. J., Gerber, S., Menge, D. N. L. & Hedin, L. O. Large losses of inorganic nitrogen from tropical rainforests suggest a lack of nitrogen limitation. Ecol. Lett. 15, 9–16 (2012).
Google Scholar
Corrales, A., Henkel, T. W. & Smith, M. E. Ectomycorrhizal associations in the tropics—biogeography, diversity patterns and ecosystem roles. N. Phytologist 220, 1076–1091 (2018).
Google Scholar
Zeng, Z. et al. Deforestation-induced warming over tropical mountain regions regulated by elevation. Nat. Geosci. 1–7 https://doi.org/10.1038/s41561-020-00666-0 (2020).
Nogués-Bravo, D., Araújo, M. B., Errea, M. P. & Martínez-Rica, J. P. Exposure of global mountain systems to climate warming during the 21st Century. Glob. Environ. Change 17, 420–428 (2007).
Google Scholar
Weintraub, S. R., Cole, R. J., Schmitt, C. G. & All, J. D. Climatic controls on the isotopic composition and availability of soil nitrogen across mountainous tropical forest. Ecosphere 7, e01412 (2016).
Google Scholar
Brookshire, E. N. J. & Thomas, S. A. Ecosystem consequences of tree monodominance for nitrogen cycling in lowland tropical forest. PLoS ONE 8, e70491 (2013).
Google Scholar
Kitayama, K. & Iwamoto, K. Patterns of natural 15N abundance in the leaf-to-soil continuum of tropical rain forests differing in N availability on Mount Kinabalu, Borneo. Plant Soil 229, 203–212 (2001).
Google Scholar
Bauters, M. et al. Contrasting nitrogen fluxes in African tropical forests of the Congo Basin. Ecol. Monogr. 89, e01342 (2019).
Google Scholar
Proctor, J., Edwards, I. D., Payton, R. W. & Nagy, L. Zonation of forest vegetation and soils of Mount Cameroon, West Africa. Plant Ecol. 192, 251–269 (2007).
Google Scholar
Grubb, P. J. & Stevens, P. F. The Forests of the Fatima Basin and Mt Kerigomna, Papua New Guinea with a Review of Montane and Subalpine Rainforests in Papuasia (Department of Human Geography, Research School of Pacific Studies…, 2017).
Dieleman, W. I. J., Venter, M., Ramachandra, A., Krockenberger, A. K. & Bird, M. I. Soil carbon stocks vary predictably with altitude in tropical forests: Implications for soil carbon storage. Geoderma 204–205, 59–67 (2013).
Google Scholar
Kapos, V., Rhind, J., Edwards, M., Price, M. F. & Ravilious, C. in Forests in sustainable mountain development: a state of knowledge report for 2000. Task Force on Forests in Sustainable Mountain Development. 4–19 (CABI, 2000). https://doi.org/10.1079/9780851994468.0004.
Sexton, J. O. et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digital Earth 6, 427–448 (2013).
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org (2022).
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48, https://doi.org/10.18637/jss.v067.i01 (2015).
Google Scholar
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
Google Scholar
Bartoń K. MuMIn: Multi-Model Inference. R package version 1.43.17 (2020).
Grömping, U. Relative Importance for Linear Regression in R: The Package Relaimpo. J. Stat. Softw. 17, 1–27 (2006).
Google Scholar
Baty, F. et al. A Toolbox for Nonlinear Regression in R: The Package nlstools. J. Stat. Softw. 66, 1–21 (2015).
Google Scholar
Source: Ecology - nature.com