in

Microbial community shifts induced by plastic and zinc as substitutes of tire abrasion

  • Hirai, H. et al. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar. Pollut. Bull. 62(8), 1683–1692. https://doi.org/10.1016/j.marpolbul.2011.06.004 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Masó, M., Garcés, E., Pagès, F. & Camp, J. Drifting plastic debris as a potential vector for dispersing harmful algal bloom (HAB) species. Sci. Mar. 67(1), 107–111. https://doi.org/10.3989/scimar.2003.67n1107 (2003).

    Article 

    Google Scholar 

  • Pandey, D., Singh, A., Ramanathan, A. & Kumar, M. The combined exposure of microplastics and toxic contaminants in the floodplains of North India: A review. J. Environ. Manag. 279, 111557. https://doi.org/10.1016/j.jenvman.2020.111557 (2021).

    Article 
    CAS 

    Google Scholar 

  • Peng, L. et al. Micro- and nano-plastics in marine environment: Source, distribution and threats—A review. Sci. Total Environ. 698, 134254. https://doi.org/10.1016/j.scitotenv.2019.134254 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rillig, M. C. & Lehmann, A. Microplastic in terrestrial ecosystems and the soil?. Environ. Sci. Technol. 46(12), 6453–6454. https://doi.org/10.1021/es302011r (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rochman, C. M. & Hoellein, T. The global odyssey of plastic pollution. Science 368(6496), 1184–1185. https://doi.org/10.1126/science.abc4428 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jan Kole, P., Löhr, A. J., van Belleghem, F. G. A. J. & Ragas, A. M. J. Wear and tear of tyres: A stealthy source of microplastics in the environment. Int. J. Environ. Res. Public Health https://doi.org/10.3390/ijerph14101265 (2017).

    Article 

    Google Scholar 

  • Sommer, F. et al. Tire abrasion as a major source of microplastics in the environment. Aerosol Air Qual. Res. 18(8), 2014–2028. https://doi.org/10.4209/aaqr.2018.03.0099 (2018).

    Article 
    CAS 

    Google Scholar 

  • Beita-Sandí, W., Selbes, M., Ersan, M. S. & Karanfil, T. Release of nitrosamines and nitrosamine precursors from scrap tires. Environ. Sci. Technol. Lett. 6(4), 251–256. https://doi.org/10.1021/acs.estlett.9b00172 (2019).

    Article 
    CAS 

    Google Scholar 

  • Kaminsky, W. & Mennerich, C. Pyrolysis of synthetic tire rubber in a fluidised-bed reactor to yield 1,3-butadiene, styrene and carbon black. J. Anal. Appl. Pyrolysis 58–59, 803–811. https://doi.org/10.1016/S0165-2370(00)00129-7 (2001).

    Article 

    Google Scholar 

  • Sundt, P., Schulze, P. E. & Syversen, F. Sources of microplastic- pollution to the marine environment. Mepex Nor. Environ. Agency 86, 20 (2014).

    Google Scholar 

  • White, W. C. Butadiene production process overview. Chem. Biol. Interact. 166(1–3), 10–14. https://doi.org/10.1016/j.cbi.2007.01.009 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alimi, O. S., Farner Budarz, J., Hernandez, L. M. & Tufenkji, N. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 52(4), 1704–1724. https://doi.org/10.1021/acs.est.7b05559 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cooper, D. A. & Corcoran, P. L. Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of Kauai, Hawaii. Mar. Pollut. Bull. 60(5), 650–654. https://doi.org/10.1016/j.marpolbul.2009.12.026 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • O’Brine, T. & Thompson, R. C. Degradation of plastic carrier bags in the marine environment. Mar. Pollut. Bull. 60(12), 2279–2283. https://doi.org/10.1016/j.marpolbul.2010.08.005 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Song, Y. K. et al. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environ. Sci Technol. 51(8), 4368–4376. https://doi.org/10.1021/acs.est.6b06155 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Adobe Inc. (2019). Adobe illustrator. Retrieved from https://www.adobe.com/Products/Illustrator.

  • Chamas, A. et al. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 8(9), 3494–3511. https://doi.org/10.1021/acssuschemeng.9b06635 (2020).

    Article 
    CAS 

    Google Scholar 

  • Councell, T. B., Duckenfield, K. U., Landa, E. R. & Callender, E. Tire-wear particles as a source of zinc to the environment. Environ. Sci. Technol. 38(15), 4206–4214. https://doi.org/10.1021/es034631f (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Awet, T. T. et al. Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil. Environ. Sci. Eur. https://doi.org/10.1186/s12302-018-0140-6 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chung, H., Son, Y., Yoon, T. K., Kim, S. & Kim, W. The effect of multi-walled carbon nanotubes on soil microbial activity. Ecotoxicol. Environ. Saf. 74(4), 569–575. https://doi.org/10.1016/j.ecoenv.2011.01.004 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huber, M., Welker, A. & Helmreich, B. Critical review of heavy metal pollution of traffic area runoff: Occurrence, influencing factors, and partitioning. Sci. Total Environ. 541, 895–919. https://doi.org/10.1016/j.scitotenv.2015.09.033 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M. & Nizami, A. S. Catalytic pyrolysis of plastic waste: A review. Process Saf. Environ. Prot. 102, 822–838. https://doi.org/10.1016/j.psep.2016.06.022 (2016).

    Article 
    CAS 

    Google Scholar 

  • Zhang, X., Li, H., Cao, Q., Jin, L. & Wang, F. Upgrading pyrolytic residue from waste tires to commercial carbon black. Waste Manag. Res. 36(5), 436–444. https://doi.org/10.1177/0734242X18764292 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu, D., Li, G., Wang, H. T. & Duan, G. L. Effects of nano- or microplastic exposure combined with arsenic on soil bacterial, fungal, and protistan communities. Chemosphere 281, 130998. https://doi.org/10.1016/j.chemosphere.2021.130998 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Pathan, S. I. et al. Soil Pollution from micro-and nanoplastic debris: A hidden and unknown biohazard. Sustainability 12(18), 1–31. https://doi.org/10.3390/su12187255 (2020).

    Article 
    CAS 

    Google Scholar 

  • Rillig, M. C. & Bonkowski, M. Microplastic and soil protists: A call for research. Environ. Pollut. 241, 1128–1131. https://doi.org/10.1016/j.envpol.2018.04.147 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zettler, E. R., Mincer, T. J. & Amaral-Zettler, L. A. Life in the “Plastisphere”: Microbial communities on plastic marine debris. Environ. Sci. Technol. 47(13), 7137–7146. https://doi.org/10.1021/es401288x (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Burns, E. E. & Boxall, A. B. A. Microplastics in the aquatic environment: Evidence for or against adverse impacts and major knowledge gaps. Environ. Toxicol. Chem. 37(11), 2776–2796. https://doi.org/10.1002/etc.4268 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bradney, L. et al. Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environ. Int. 2019(131), 104937. https://doi.org/10.1016/j.envint.2019.104937 (2018).

    Article 
    CAS 

    Google Scholar 

  • Duis, K. & Coors, A. Microplastics in the Aquatic and Terrestrial Environment: Sources (with a Specific Focus on Personal Care Products), fate and effects. Environ. Sci. Eur. 28(1), 1–25. https://doi.org/10.1186/s12302-015-0069-y (2016).

    Article 
    CAS 

    Google Scholar 

  • Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3(7), 25–29. https://doi.org/10.1126/sciadv.1700782 (2017).

    Article 
    CAS 

    Google Scholar 

  • Jayasiri, H. B., Purushothaman, C. S. & Vennila, A. Quantitative analysis of plastic debris on recreational beaches in Mumbai, India. Mar. Pollut. Bull. 77(1–2), 107–112. https://doi.org/10.1016/j.marpolbul.2013.10.024 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lassen, C., Hansen, S. F., Magnusson, K., Hartmann, N. B., Rehne Jensen, P., Nielsen, T. G. & Brinch, A. Microplastics occurrence, effects and sources of releases (2015).

  • Weithmann, N. et al. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv. https://doi.org/10.1126/sciadv.aap8060 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hidalgo-Ruz, V., Gutow, L., Thompson, R. C. & Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 46(6), 3060–3075. https://doi.org/10.1021/es2031505 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Boenigk, J., Matz, C., Jürgens, K. & Arndt, H. Confusing selective feeding with differential digestion in bacterivorous nanoflagellates. J. Eukaryot. Microbiol. 48(4), 425–432. https://doi.org/10.1111/j.1550-7408.2001.tb00175.x (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boenigk, J., Matz, C., Jürgens, K. & Arndt, H. Food concentration-dependent regulation of food selectivity of interception-feeding bacterivorous nanoflagellates. Aquat. Microb. Ecol. 27(2), 195–202. https://doi.org/10.3354/ame027195 (2002).

    Article 

    Google Scholar 

  • Wright, S. L., Thompson, R. C. & Galloway, T. S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 178, 483–492. https://doi.org/10.1016/j.envpol.2013.02.031 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moore, C. J. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environ. Res. 108(2), 131–139. https://doi.org/10.1016/j.envres.2008.07.025 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fu, S. F. et al. Exposure to polystyrene nanoplastic leads to inhibition of anaerobic digestion system. Sci. Total Environ. 625, 64–70. https://doi.org/10.1016/j.scitotenv.2017.12.158 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bock, C. et al. Factors shaping community patterns of protists and bacteria on a European scale. Environ. Microbiol. 22(6), 2243–2260. https://doi.org/10.1111/1462-2920.14992 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Besseling, E., Wang, B., Lürling, M. & Koelmans, A. A. Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ. Sci. Technol. 48(20), 12336–12343. https://doi.org/10.1021/es503001d (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brown, D. M., Wilson, M. R., MacNee, W., Stone, V. & Donaldson, K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol. Appl. Pharmacol. 175(3), 191–199. https://doi.org/10.1006/taap.2001.9240 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jeong, C. B. et al. Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-P38 activation in the monogonont rotifer (Brachionus Koreanus). Environ. Sci. Technol. 50(16), 8849–8857. https://doi.org/10.1021/acs.est.6b01441 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kang, H. C., Jeong, H. J., Jang, S. H. & Lee, K. H. Feeding by common heterotrophic protists on the phototrophic dinoflagellate Biecheleriopsis adriatica (Suessiaceae) compared to that of other suessioid dinoflagellates. Algae 34(2), 127–140. https://doi.org/10.4490/algae.2019.34.5.29 (2019).

    Article 
    CAS 

    Google Scholar 

  • Sjollema, S. B., Redondo-Hasselerharm, P., Leslie, H. A., Kraak, M. H. S. & Vethaak, A. D. Do plastic particles affect microalgal photosynthesis and growth?. Aquat. Toxicol. 170, 259–261. https://doi.org/10.1016/j.aquatox.2015.12.002 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rossi, G., Barnoud, J. & Monticelli, L. Polystyrene nanoparticles perturb lipid membranes. J. Phys. Chem. Lett. 5(1), 241–246. https://doi.org/10.1021/jz402234c (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brandts, I. et al. Effects of nanoplastics on mytilus galloprovincialis after individual and combined exposure with carbamazepine. Sci. Total Environ. 643, 775–784. https://doi.org/10.1016/j.scitotenv.2018.06.257 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ciacci, C. et al. Nanoparticle-biological interactions in a marine benthic foraminifer. Sci. Rep. https://doi.org/10.1038/s41598-019-56037-2 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, J. A. et al. Low dose of amino-modified nanoparticles induces cell cycle arrest. ACS Nano 7(9), 7483–7494 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mao, Y. et al. Phytoplankton response to polystyrene microplastics: Perspective from an entire growth period. Chemosphere https://doi.org/10.1016/j.chemosphere.2018.05.170 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Wang, F. et al. Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles. Nanoscale 5(22), 10868–10876. https://doi.org/10.1039/c3nr03249c (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Xia, T. et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 6(8), 1794–1807. https://doi.org/10.1021/nl061025k (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lagarde, F. et al. Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environ. Pollut. 215, 331–339. https://doi.org/10.1016/j.envpol.2016.05.006 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bhattacharya, P., Lin, S., Turner, J. P. & Ke, P. C. Physical adsorption of charged plastic nanoparticles affects algal photosynthesis. J. Phys. Chem. C 114(39), 16556–16561. https://doi.org/10.1021/jp1054759 (2010).

    Article 
    CAS 

    Google Scholar 

  • Johansen, J. L., Rønn, R. & Ekelund, F. Toxicity of cadmium and zinc to small soil protists. Environ. Pollut. 242, 1510–1517. https://doi.org/10.1016/j.envpol.2018.08.034 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Díaz, S., Martín-González, A. & Carlos Gutiérrez, J. Evaluation of heavy metal acute toxicity and bioaccumulation in soil ciliated protozoa. Environ. Int. 32(6), 711–717. https://doi.org/10.1016/j.envint.2006.03.004 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Subba, P. et al. Zinc stress induces physiological, ultra-structural and biochemical changes in mandarin orange (Citrus Reticulata Blanco) seedlings. Physiol. Mol. Biol. Plants 20(4), 461–473. https://doi.org/10.1007/s12298-014-0254-2 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Corcoll, N. et al. The effect of metals on photosynthesis processes and diatom metrics of biofilm from a metal-contaminated river: A translocation experiment. Ecol. Indic. 18, 620–631. https://doi.org/10.1016/j.ecolind.2012.01.026 (2012).

    Article 
    CAS 

    Google Scholar 

  • Moffett, B. F. et al. Zinc contamination decreases the bacterial diversity of agricultural soil. FEMS Microbiol. Ecol. 43(1), 13–19. https://doi.org/10.1016/S0168-6496(02)00448-8 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kuperman, R. G. & Carreiro, M. M. Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem. Soil Biol. Biochem. 29(2), 179–190. https://doi.org/10.1016/S0038-0717(96)00297-0 (1997).

    Article 
    CAS 

    Google Scholar 

  • Masmoudi, S. et al. Cadmium, copper, sodium and zinc effects on diatoms: From heaven to hell-a review. Cryptogam Algol 34(2), 185–225. https://doi.org/10.7872/crya.v34.iss2.2013.185 (2013).

    Article 

    Google Scholar 

  • Gadd, G. M. & de Rome, L. Biosorption of copper by fungal melanin. Appl. Microbiol. Biotechnol. 29(6), 610–617. https://doi.org/10.1007/BF00260993 (1988).

    Article 
    CAS 

    Google Scholar 

  • Khan, M. & Scullion, J. Effects of metal (Cd, Cu, Ni, Pb or Zn) enrichment of sewage-sludge on soil micro-organisms and their activities. Appl. Soil. Ecol. 20(2), 145–155. https://doi.org/10.1016/S0929-1393(02)00018-5 (2002).

    Article 

    Google Scholar 

  • Guillard, R. R. L. & Lorenzen, C. J. Yellow-green algae with chlorophyllide C12. J. Phycol. 8(1), 10–14. https://doi.org/10.1111/j.1529-8817.1972.tb03995.x (1972).

    Article 
    CAS 

    Google Scholar 

  • Zagata, P., Kopańska, M., Greczek-Stachura, M. & Burnecki, T. Acute toxicity of metals: Nickel and zinc to Paramecium bursaria and its endosymbionts. J. Microbiol. Biotechnol. Food Sci. 04, 128–131. https://doi.org/10.15414/jmbfs.2015.4.special2.128-131 (2015).

    Article 
    CAS 

    Google Scholar 

  • Lenz, R., Enders, K. & Nielsen, T. G. Microplastic exposure studies should be environmentally realistic. Proc. Natl. Acad. Sci. U. S. A. 113(29), E4121–E4122. https://doi.org/10.1073/pnas.1606615113 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schertzinger, G., Ruchter, N. & Sures, B. Metal accumulation in sediments and amphipods downstream of combined sewer overflows. Sci. Total Environ. 616–617, 1199–1207. https://doi.org/10.1016/j.scitotenv.2017.10.199 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Erasmus, J. H. et al. Metal accumulation in riverine macroinvertebrates from a platinum mining region. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.134738 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Pradhan, S., Hedberg, J., Blomberg, E., Wold, S. & Odnevall Wallinder, I. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles. J. Nanopart. Res. 18(9), 1–14. https://doi.org/10.1007/s11051-016-3597-5 (2016).

    Article 
    CAS 

    Google Scholar 

  • Taurozzi, J. S., Hackley, V. A. & Wiesner, M. R. Preparation of nanoparticle dispersions from powdered material using ultrasonic disruption. NIST Spec. Publ. 1200–2, 1–15 (2012).

    Google Scholar 

  • Graupner, N. et al. Effects of short-term flooding on aquatic and terrestrial microeukaryotic communities: A mesocosm approach. Aquat. Microb. Ecol. 80(3), 257–272. https://doi.org/10.3354/ame01853 (2017).

    Article 

    Google Scholar 

  • Strasser, R., Srivastava, A. & Tsimilli-Michael, M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In Probing Photosynthesis Mechanisms, Regulation and Adaption (eds Yanus, M. et al.) (Taylor and Francis, 2020).

    Google Scholar 

  • Thwe, A. & Kasemsap, P. Quantification of OJIP fluorescence transient in tomato plants under acute ozone stress (2015).

  • Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE 4(7), 1–9. https://doi.org/10.1371/journal.pone.0006372 (2009).

    Article 
    CAS 

    Google Scholar 

  • Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like RRNA-coding regions. Gene 71(2), 491–499. https://doi.org/10.1016/0378-1119(88)90066-2 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Andrews, S. FastQC: A quality control tool for high throughput sequence data (2015).

  • Lange, A. et al. AmpliconDuo: A split-sample filtering protocol for high-throughput amplicon sequencing of microbial communities. PLoS ONE 10(11), 1–22. https://doi.org/10.1371/journal.pone.0141590 (2015).

    Article 
    CAS 

    Google Scholar 

  • Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27(6), 863–864. https://doi.org/10.1093/bioinformatics/btr026 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Masella, P. A., Bartram, A. K., Truszkowski, J. M., Brow, D. G. & Neufeld, J. D. PANDAseq: Paired-end assembler for illumina sequences. BMC Bioinform. https://doi.org/10.1186/1471-2105-13-31 (2012).

    Article 

    Google Scholar 

  • Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16), 2194–2200. https://doi.org/10.1093/bioinformatics/btr381 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm: Robust and fast clustering method for amplicon-based studies. PeerJ 2014(1), 1–13. https://doi.org/10.7717/peerj.593 (2014).

    Article 

    Google Scholar 

  • Callahan, B. J. et al. DADA2: High-resolution sample inference from illumina amplicon data. Nat. Methods 13(7), 581–583. https://doi.org/10.1038/nmeth.3869 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Welzel, M. et al. Natrix: A snakemake-based workflow for processing, clustering, and taxonomically assigning amplicon sequencing reads. BMC Bioinform. 21(1), 1–14. https://doi.org/10.1186/s12859-020-03852-4 (2020).

    Article 
    CAS 

    Google Scholar 

  • Oksanen, J. Package “vegan” Title Community Ecology Package (2022).

  • R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/.

  • Chen, W., Simpson, J. & Leveque, C. RAM: R for amplicon-sequencing-based microbial-ecology (2018).

  • Yarza, P. et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S RRNA gene sequences. Nat. Rev. Microbiol. 12(9), 635–645. https://doi.org/10.1038/nrmicro3330 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15(12), 1–21. https://doi.org/10.1186/s13059-014-0550-8 (2014).

    Article 
    CAS 

    Google Scholar 

  • Palarea-Albaladejo, J. & Martín-Fernández, J. A. ZCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemom. Intell. Lab. Syst. 143, 85–96. https://doi.org/10.1016/j.chemolab.2015.02.019 (2015).

    Article 
    CAS 

    Google Scholar 

  • Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 1–6. https://doi.org/10.3389/fmicb.2017.02224 (2017).

    Article 

    Google Scholar 

  • Dusaucy, J., Gateuille, D., Perrette, Y. & Naffrechoux, E. Microplastic pollution of worldwide lakes. Environ. Pollut. 284, 117075. https://doi.org/10.1016/j.envpol.2021.117075 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vardhan, K. H., Kumar, P. S. & Panda, R. C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 290, 111197. https://doi.org/10.1016/j.molliq.2019.111197 (2019).

    Article 
    CAS 

    Google Scholar 

  • Damare, V. S. Diversity of thraustochytrid protists isolated from brown alga, Sargassum cinereum using 18S RDNA sequencing and their morphological response to heavy metals. J. Mar. Biol. Assoc. 95(2), 265–276. https://doi.org/10.1017/S0025315414001696 (2015).

    Article 
    CAS 

    Google Scholar 

  • Giongo, A. et al. Adaption of Microbial communities to the hostile environment in the Doce river after the collapse of two iron ore tailing dams. Heliyon https://doi.org/10.1016/j.heliyon.2020.e04778 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kelly, J. J., Häggblom, M. M. & Tate, R. L. Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipid fatty acid profiles. Biol. Fertil. Soils 38(2), 65–71. https://doi.org/10.1007/s00374-003-0642-1 (2003).

    Article 
    CAS 

    Google Scholar 

  • Baddar, Z. E., Peck, E. & Xu, X. Temporal deposition of copper and zinc in the sediments of metal removal constructed wetlands. PLoS ONE 16, 1–14. https://doi.org/10.1371/journal.pone.0255527 (2021).

    Article 
    CAS 

    Google Scholar 

  • Li, X., Shen, Z., Wai, O. W. H. & Li, Y. S. Chemical partitioning of heavy metal contaminants in sediments of the Pearl River Estuary. Chem. Speciat. Bioavailab. 12(1), 17–25. https://doi.org/10.3184/095422900782775607 (2000).

    Article 
    CAS 

    Google Scholar 

  • Müller, B. & Sigg, L. Interaction of trace metals with natural particle surfaces: Comparison between adsorption experiments and field measurements—Dedicated to Werner Stumm for his 65th birthday. Aquat. Sci. 52(1), 75–92. https://doi.org/10.1007/BF00878242 (1990).

    Article 

    Google Scholar 

  • Bradl, H. B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 277(1), 1–18. https://doi.org/10.1016/j.jcis.2004.04.005 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Siegel, F. R. Environmental Geochemistry of Potentially Toxic Heavy Metals (Springer-Verlag, 2002).

    Book 

    Google Scholar 

  • Vig, K., Megharaj, M., Sethunathan, N. & Naidu, R. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: A review. Adv. Environ. Res. 8(1), 121–135. https://doi.org/10.1016/S1093-0191(02)00135-1 (2003).

    Article 
    CAS 

    Google Scholar 

  • Nicolau, A., Mota, M. & Lima, N. Physiological responses of tetrahymena pyriformis to copper, zinc, cycloheximide and triton X-100. FEMS Microbiol. Ecol. 30(3), 209–216. https://doi.org/10.1016/S0168-6496(99)00057-4 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Admiraal, W. et al. Short-term toxicity of zinc to microbenthic algae and bacteria in a metal polluted stream. Water Res. 33(9), 1989–1996. https://doi.org/10.1016/S0043-1354(98)00426-6 (1999).

    Article 
    CAS 

    Google Scholar 

  • Bradac, P., Navarro, E., Odzak, N., Behra, R. & Sigg, L. Kinetics of cadmium accumulation in periphyton under freshwater conditions. Environ. Toxicol. Chem. 28(10), 2108–2116. https://doi.org/10.1897/08-511R1.1 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Collard, J. & Matagne, R. F. Cd2+ resistance in wild-type and mutant strains of Chlamydomonas reinhardtii. Environ. Exp. Bot. 34(2), 235–244 (1994).

    Article 
    CAS 

    Google Scholar 

  • Wright, R. J., Gibson, M. I. & Christie-Oleza, J. A. Understanding microbial community dynamics to improve optimal microbiome selection. Microbiome 7(1), 1–14. https://doi.org/10.1186/s40168-019-0702-x (2019).

    Article 

    Google Scholar 

  • Buffle, J. The key role of environmental colloids/nanoparticles for the sustainability of life. Environ. Chem. 3(3), 155–158. https://doi.org/10.1071/ENv3n3_ES (2006).

    Article 
    CAS 

    Google Scholar 

  • Nowack, B. & Bucheli, T. D. Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 150(1), 5–22. https://doi.org/10.1016/j.envpol.2007.06.006 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fetzer, I. et al. The extent of functional redundancy changes as species’ roles shift in different environments. Proc. Natl. Acad. Sci. U. S. A. 112(48), 14888–14893. https://doi.org/10.1073/pnas.1505587112 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Biggs, C. R. et al. Does functional redundancy affect ecological stability and resilience? A review and meta-analysis. Ecosphere https://doi.org/10.1002/ecs2.3184 (2020).

    Article 

    Google Scholar 

  • Fleeger, J. W. How do indirect effects of contaminants inform ecotoxicology? A review. Processes https://doi.org/10.3390/pr8121659 (2020).

    Article 

    Google Scholar 

  • Oriekhova, O. & Stoll, S. Heteroaggregation of nanoplastic particles in the presence of inorganic colloids and natural organic matter. Environ. Sci. Nano. 5(3), 792–799. https://doi.org/10.1039/c7en01119a (2018).

    Article 
    CAS 

    Google Scholar 

  • Rowenczyk, L. et al. Heteroaggregates of polystyrene nanospheres and organic matter: Preparation, characterization and evaluation of their toxicity to algae in environmentally relevant conditions. Nanomaterials 11(2), 1–15. https://doi.org/10.3390/nano11020482 (2021).

    Article 
    CAS 

    Google Scholar 

  • Saavedra, J., Stoll, S. & Slaveykova, V. I. Influence of nanoplastic surface charge on eco-corona formation, aggregation and toxicity to freshwater zooplankton. Environ. Pollut. 252, 715–722. https://doi.org/10.1016/j.envpol.2019.05.135 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bižic-Ionescu, M., Ionescu, D. & Grossart, H. P. Organic particles: Heterogeneous hubs for microbial interactions in aquatic ecosystems. Front. Microbiol. 9, 1–15. https://doi.org/10.3389/fmicb.2018.02569 (2018).

    Article 

    Google Scholar 

  • Lespes, G., Faucher, S. & Slaveykova, V. I. natural nanoparticles, anthropogenic nanoparticles, where is the Frontier?. Front. Environ. Sci. 8, 1–5. https://doi.org/10.3389/fenvs.2020.00071 (2020).

    Article 

    Google Scholar 

  • Stabnikova, O. et al. Microbial life on the surface of microplastics in natural waters. Appl. Sci. 11(24), 1–19. https://doi.org/10.3390/app112411692 (2021).

    Article 
    CAS 

    Google Scholar 

  • Suominen, S., Doorenspleet, K., Sinninghe Damsté, J. S. & Villanueva, L. Microbial community development on model particles in the deep sulfidic waters of the Black Sea. Environ. Microbiol. 23(6), 2729–2746. https://doi.org/10.1111/1462-2920.15024 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wagner, S., Gondikas, A., Neubauer, E., Hofmann, T. & von der Kammer, F. Spot the difference: Engineered and natural nanoparticles in the environment-release, behavior, and fate. Angew. Chem. Int. Ed. 53(46), 12398–12419. https://doi.org/10.1002/anie.201405050 (2014).

    Article 
    CAS 

    Google Scholar 

  • Amelia, T. S. et al. Marine microplastics as vectors of major ocean pollutants and its hazards to the marine ecosystem and humans. Prog. Earth Planet. Sci. https://doi.org/10.1186/s40645-020-00405-4 (2021).

    Article 

    Google Scholar 

  • Liu, J., Huang, J. & Che, F. Microalgae as feedstocks for biodiesel production. In Biodiesel—Feedstocks and Processing Technologies (ed. Stoytcheva, M.) (InTech, 2011). https://doi.org/10.5772/25600.

    Chapter 

    Google Scholar 

  • Takamura, N., Kasai, F. & Watanabe, M. M. Effects of Cu, Cd and Zn on photosynthesis of freshwater benthic algae. J. Appl. Phycol. 1(1), 39–52. https://doi.org/10.1007/BF00003534 (1989).

    Article 
    CAS 

    Google Scholar 

  • Brembu, T., Jørstad, M., Winge, P., Valle, K. C. & Bones, A. M. Genome-wide profiling of responses to cadmium in the diatom Phaeodactylum tricornutum. Environ. Sci. Technol. 45(18), 7640–7647. https://doi.org/10.1021/es2002259 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Fernandez, J. C. & Henriques, F. S. Biochemical, physiological and structural effects of excess copper in plants. Bot. Rev. 57(3), 246–273 (1991).

    Article 

    Google Scholar 

  • Haq, R. U., Rehman, A. & Shakoori, A. R. Effect of dichromate on population and growth of various protozoa isolated from industrial effluents. Folia Microbiol. 45(3), 275–278. https://doi.org/10.1007/bf02908959 (2000).

    Article 
    CAS 

    Google Scholar 

  • Rehman, A., Shakoori, F. R. & Shakoori, A. R. Heavy metal resistant freshwater ciliate, Euplotes mutabilis, isolated from industrial effluents has potential to decontaminate wastewater of toxic metals. Bioresour. Technol. 99(9), 3890–3895. https://doi.org/10.1016/j.biortech.2007.08.007 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rehman, A., Ashraf, S., Qazi, J. I. & Shakoori, A. R. Uptake of lead by a ciliate, stylonychia mytilus, isolated from industrial effluents: Potential use in bioremediation of wastewater. Bull. Environ. Contam. Toxicol. 75(2), 290–296. https://doi.org/10.1007/s00128-005-0751-7 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shakoori, A. R., Rehman, A. & ul-Haq, R. Multiple metal resistance in the ciliate protozoan, vorticella microstoma, isolated from industrial effluents and its potential in bioremediation of toxic wastes. Bull. Environ. Contam. Toxicol. 72(5), 1046–1051. https://doi.org/10.1007/s00128-004-0349-5 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Falasco, E. et al. Morphological abnormalities of diatom silica walls in relation to heavy metal contamination and artificial growth conditions. Water SA 35(5), 595–606. https://doi.org/10.4314/wsa.v35i5.49185 (2009).

    Article 
    CAS 

    Google Scholar 

  • Tadros, M. G., Mbuthia, P. & Smith, W. Differential response of marine diatoms to trace metals. Bull. Environ. Contam. Toxicol. 44(6), 826–831. https://doi.org/10.1007/BF01702170 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wanner, M. et al. Soil testate amoebae and diatoms as bioindicators of an old heavy metal contaminated floodplain in Japan. Microb. Ecol. 79(1), 123–133. https://doi.org/10.1007/s00248-019-01383-x (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shi, J., Podola, B. & Melkonian, M. Application of a prototype-scale twin-layer photobioreactor for effective N and P removal from different process stages of municipal wastewater by immobilized microalgae. Bioresour. Technol. 154, 260–266. https://doi.org/10.1016/j.biortech.2013.11.100 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, T., Lin, G., Podola, B. & Melkonian, M. Continuous removal of zinc from wastewater and mine dump leachate by a microalgal biofilm PSBR. J. Hazard. Mater. 297, 112–118. https://doi.org/10.1016/j.jhazmat.2015.04.080 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bruning, K. Infection of the diatom Asterionella by a chytrid. I. Effects of light on reproduction and infectivity of the parasite. J. Plankton Res. 13(1), 103–117. https://doi.org/10.1093/plankt/13.1.103 (1991).

    Article 

    Google Scholar 

  • Carney, L. T. & Lane, T. W. Parasites in algae mass culture. Front. Microbiol. 5, 1–8. https://doi.org/10.3389/fmicb.2014.00278 (2014).

    Article 

    Google Scholar 

  • Hanic, L. A., Sekimoto, S. & Bates, S. S. Oomycete and chytrid infections of the marine diatom Pseudo-nitzschia pungens (Bacillariophyceae) from Prince Edward Island. Botany 87(11), 1096–1105. https://doi.org/10.1139/B09-070 (2009).

    Article 
    CAS 

    Google Scholar 

  • Sun, A. et al. Fertilization alters protistan consumers and parasites in crop-associated microbiomes. Environ. Microbiol. 23(4), 2169–2183. https://doi.org/10.1111/1462-2920.15385 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scholz, B., Guillou, L., Marano, A. V., Neuhauser, S. & Brooke, K. Europe PMC funders group zoosporic parasites infecting marine diatoms—A black box that needs to be opened. Fungal Ecol. https://doi.org/10.1016/j.funeco.2015.09.002.Zoosporic (2017).

    Article 

    Google Scholar 

  • Peacock, E. E., Olson, R. J. & Sosik, H. M. Parasitic infection of the diatom Guinardia delicatula, a recurrent and ecologically important phenomenon on the New England Shelf. Mar. Ecol. Prog. Ser. 503, 1–10. https://doi.org/10.3354/meps10784 (2014).

    Article 
    ADS 

    Google Scholar 

  • Duarte, S., Pascoal, C. & Cássio, F. Effects of zinc on leaf decomposition by fungi in streams: Studies in microcosms. Microb. Ecol. 48(3), 366–374. https://doi.org/10.1007/s00248-003-2032-5 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kammerlander, B. et al. High diversity of protistan plankton communities in remote high mountain lakes in the European Alps and the Himalayan Mountains. FEMS Microbiol. Ecol. 91(4), 1–10. https://doi.org/10.1093/femsec/fiv010 (2015).

    Article 
    CAS 

    Google Scholar 

  • Sieber, G., Beisser, D., Bock, C. & Boenigk, J. Protistan and fungal diversity in soils and freshwater lakes are substantially different. Sci. Rep. 10(1), 1–11. https://doi.org/10.1038/s41598-020-77045-7 (2020).

    Article 
    CAS 

    Google Scholar 

  • Gunaalan, K., Fabbri, E. & Capolupo, M. The hidden threat of plastic leachates: A critical review on their impacts on aquatic organisms. Water Res. https://doi.org/10.1016/j.watres.2020.116170 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Tetu, S. G., Sarker, I., Schrameyer, V., Pickford, R., Elbourne, L. D., Moore, L.R. & Paulsen, I.T. Plastic leachates impair growth and oxygen production in Prochlorococcus, the ocean’s most abundant photosynthetic bacteria. Commun. Biol. 2(1), 1–9. https://doi.org/10.1038/s42003-019-0410-x (2019).

  • Gouin, T., Roche, N., Lohmann, R. & Hodges, G. A Thermodynamic approach for assessing the environmental exposure of chemicals absorbed to microplastic. Environ. Sci. Technol. 45(4), 1466–1472. https://doi.org/10.1021/es1032025 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lohmann, R. Microplastics are not important for the cycling and bioaccumulation of organic pollutants in the oceans—But should microplastics be considered POPs themselves?. Integr. Environ. Assess. Manag. 13(3), 460–465. https://doi.org/10.1002/ieam.1914 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sukkasem, C. & Laehlah, S. An economical upflow bio-filter circuit (UBFC): A biocatalyst microbial fuel cell for sulfate-sulfide rich wastewater treatment. Environ. Sci. 1(2), 161–168. https://doi.org/10.1039/c4ew00028e (2015).

    Article 
    CAS 

    Google Scholar 

  • Abatenh, E., Gizaw, B., Tsegaye, Z. & Wassie, M. The role of microorganisms in bioremediation-A review. Open J. Environ. Biol. 2(1), 38–46. https://doi.org/10.17352/ojeb (2017).

    Article 

    Google Scholar 

  • Zrimec, J., Kokina, M., Jonasson, S., Zorrilla, F. & Zelezniak, A. Plastic-degrading potential across the global microbiome correlates with recent pollution trends. MBio https://doi.org/10.1128/mBio (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Siver, P. A. Synurophyte algae. In Freshwater Algae of North America. Ecology and classification (eds Wehr, J. D. & Sheath, R. G.) 523–558 (Elsevier, 2003).

    Chapter 

    Google Scholar 

  • Andersen, R. A. Molecular systematics of the chrysophyceae and synurophyceae. In Unravelling the Algae: The Past, Present, and Future of Algal Systematics (eds Brodie, J. & Lewis, J.) 285–314 (CRC Press, Boca Raton, 2007).

    Chapter 

    Google Scholar 

  • Engin, I. K., Cekmecelioglu, D., Yücel, A. M. & Oktem, H. A. Evaluation of heterotrophic and mixotrophic cultivation of novel Micractinium Sp. ME05 on vinasse and its scale up for biodiesel production. Bioresour. Technol. 251, 128–134. https://doi.org/10.1016/j.biortech.2017.12.023 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Patrick, R. Ecology of freshwater diatoms and diatom communities. In The Biology of Diatoms (ed. Werner, D.) 284–332 (University of California Press, 1977).

    Google Scholar 

  • Findenig, B. M., Chatzinotas, A. & Boenigk, J. Taxonomic and ecological characterization of stomatocysts of spumella-like flagellates (Chrysophyceae). J. Phycol. 46(5), 868–881. https://doi.org/10.1111/j.1529-8817.2010.00892.x (2010).

    Article 

    Google Scholar 

  • Perez-Garcia, O., Escalante, F. M. E., de-Bashan, L. E. & Bashan, Y. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res. 45(1), 11–36. https://doi.org/10.1016/j.watres.2010.08.037 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Preisig, H. R. & Hibberd, D. J. Ultrastructure and taxonomy of Paraphysomonas (Chrysophyceae) and related genera 3. Nord. J. Bot. 3(6), 695–723. https://doi.org/10.1111/j.1756-1051.1983.tb01481.x (1983).

    Article 

    Google Scholar 

  • Atkins, M. S. et al. Tolerance of flagellated protists to high sulfide and metal concentrations potentially encountered at deep-sea hydrothermal vents. Mar. Ecol. Prog. Ser. 226, 63–75. https://doi.org/10.3354/meps226063 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Manru, G., Weisong, F. & Yunfen, S. Ecological study on protozoa in the sediment of the three-gorges area of the Changjiang River. Chin. J. Oceanol. Limnol. 6(3), 272–280. https://doi.org/10.1007/BF02846505 (1988).

    Article 

    Google Scholar 

  • Tomilina, I. I., Gremyachikh, V. A., Myl’Nikov, A. P. & Komov, V. T. The effect of metal oxide nanoparticles (CeO2, TiO2, and ZnO) on biological parameters of freshwater nanoflagellates and crustaceans. Dokl. Biol. Sci. 436(1), 53–55. https://doi.org/10.1134/S0012496611010169 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schampera, C. et al. Exposure to nanoplastics affects the outcome of infectious disease in phytoplankton. Environ. Pollut. https://doi.org/10.1016/j.envpol.2021.116781 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Gonçalves, J. M., Sousa, V. S., Teixeira, M. R. & Bebianno, M. J. Chronic toxicity of polystyrene nanoparticles in the marine mussel Mytilus galloprovincialis. Chemosphere https://doi.org/10.1016/j.chemosphere.2021.132356 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Kelpsiene, E., Torstensson, O., Ekvall, M. T., Hansson, L. A. & Cedervall, T. Long-term exposure to nanoplastics reduces life-time in Daphnia magna. Sci. Rep. 10(1), 1–7. https://doi.org/10.1038/s41598-020-63028-1 (2020).

    Article 
    CAS 

    Google Scholar 

  • Amin, N. M. Techniques for assessment of heavy metal toxicity using Acanthamoeba Sp, a small, naked and free-living amoeba. Funct. Ecosyst. https://doi.org/10.5772/36008 (2012).

    Article 

    Google Scholar 

  • Amin, N. M., Azhar, N. & Shazili, M. Cytotoxic effects of mercury, cadmium, lead and zinc on Acanthamoeba Castellanii (2006).

  • Gnecco, I., Berretta, C., Lanza, L. G. & la Barbera, P. Storm water pollution in the urban environment of Genoa, Italy. Atmos. Res. 77, 60–73. https://doi.org/10.1016/j.atmosres.2004.10.017 (2005).

    Article 
    CAS 

    Google Scholar 

  • Heim, R. R. An overview of weather and climate extremes—Products and trends. Weather Clim. Extrem. 10, 1–9. https://doi.org/10.1016/j.wace.2015.11.001 (2015).

    Article 

    Google Scholar 

  • Saiki, M. K., Castleberry, D. T., May, T. W., Martin, B. A. & Bullard, F. N. Copper, cadmium, and zinc concentrations in aquatic food chains from the upper Sacramento River (California) and selected tributaries. Arch. Environ. Contam. Toxicol. 29(4), 484–491. https://doi.org/10.1007/BF00208378 (1995).

    Article 
    CAS 

    Google Scholar 

  • Wagner, S. et al. Tire wear particles in the aquatic environment—A review on generation, analysis, occurrence, fate and effects. Water Res. 139, 83–100. https://doi.org/10.1016/j.watres.2018.03.051 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, L., Zhao, B., Xu, G. & Guan, Y. Characterizing fluvial heavy metal pollutions under different rainfall conditions: Implication for aquatic environment protection. Sci. Total Environ. 635, 1495–1506. https://doi.org/10.1016/j.scitotenv.2018.04.211 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, B. et al. Characterization of nitrosamines and nitrosamine precursors as non-point source pollutants during heavy rainfall events in an urban water environment. J. Hazard. Mater. 424, 127552. https://doi.org/10.1016/j.jhazmat.2021.127552 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hüffer, T., Wagner, S., Reemtsma, T. & Hofmann, T. Sorption of organic substances to tire wear materials: Similarities and differences with other types of microplastic. TrAC Trends Anal. Chem. 113, 392–401. https://doi.org/10.1016/j.trac.2018.11.029 (2019).

    Article 
    CAS 

    Google Scholar 

  • Tamis, J. E. et al. Environmental risks of car tire microplastic particles and other road runoff pollutants. Microplastics Nanoplastics 1(1), 1–17. https://doi.org/10.1186/s43591-021-00008-w (2021).

    Article 

    Google Scholar 

  • Chèvre, N. et al. Substance flow analysis as a tool for urban water management. Water Sci. Technol. 63(7), 1341–1348. https://doi.org/10.2166/wst.2011.132 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Šourková, M., Adamcová, D. & Vaverková, M. D. The influence of microplastics from ground tyres on the acute, subchronical toxicity and microbial respiration of soil. Environ. MDPI 8(11), 1–14. https://doi.org/10.3390/environments8110128 (2021).

    Article 

    Google Scholar 

  • Ye, G., Zhang, X., Yan, C., Lin, Y. & Huang, Q. Polystyrene microplastics induce microbial dysbiosis and dysfunction in surrounding seawater. Environ. Int. 156, 106724. https://doi.org/10.1016/j.envint.2021.106724 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Radiation dose and gene expression analysis of wild boar 10 years after the Fukushima Daiichi Nuclear Plant accident

    Longitudinal analysis of the Five Sisters hot springs in Yellowstone National Park reveals a dynamic thermoalkaline environment