in

Multiscale responses and recovery of soils to wildfire in a sagebrush steppe ecosystem

  • Odum, E. P. The strategy of ecosystem development. Science 164, 262–270 (1969).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gorham, E., Vitousek, P. M. & Reiners, W. A. The regulation of element budgets over the course of terrestrial ecosystem succession. Annu. Rev. Ecol. Syst. 10, 53–84 (1979).

    Article 
    CAS 

    Google Scholar 

  • Corman, J. R. et al. Foundations and frontiers of ecosystem science: Legacy of a classic paper (Odum 1969). Ecosystems 22, 1160–1172. https://doi.org/10.1007/s10021-018-0316-3 (2019).

    Article 

    Google Scholar 

  • Santín, C. et al. Towards a global assessment of pyrogenic carbon from vegetation fires. Glob. Change Biol. 22, 76–91. https://doi.org/10.1111/gcb.12985 (2016).

    Article 
    ADS 

    Google Scholar 

  • Kominoski, J. S., Gaiser, E. E. & Baer, S. G. Advancing theories of ecosystem development through long-term ecological research. Bioscience 68, 554–562. https://doi.org/10.1093/biosci/biy070 (2018).

    Article 

    Google Scholar 

  • Balch, J. K., Bradley, B. A., D’Antonio, C. M. & Gómez-Dans, J. Introduced annual grass increases regional fire activity across the arid western USA (1980–2009). Glob. Change Biol. 19, 173–183. https://doi.org/10.1111/gcb.12046 (2013).

    Article 
    ADS 

    Google Scholar 

  • Abatzoglou, J. T. & Kolden, C. A. Climate change in Western US deserts: Potential for increased wildfire and invasive annual grasses. Rangeland Ecol. Manag. 64(5), 471–478 (2011).

    Article 

    Google Scholar 

  • Shi, H. et al. Historical cover trends in a sagebrush steppe ecosystem from 1985 to 2013: Links with climate, disturbance, and management. Ecosystems 21, 913–929. https://doi.org/10.1007/s10021-017-0191-3 (2018).

    Article 

    Google Scholar 

  • Seyfried, M. S. & Wilcox, B. P. Scale and the nature of spatial variability: Field examples having implications for hydrologic modeling. Water Resour. Res. 31, 173–184. https://doi.org/10.1029/94WR02025 (1995).

    Article 
    ADS 

    Google Scholar 

  • Gasch, C. K., Huzurbazar, S. V. & Stahl, P. D. Description of vegetation and soil properties in sagebrush steppe following pipeline burial, reclamation, and recovery time. Geoderma 265, 19–26. https://doi.org/10.1016/j.geoderma.2015.11.013 (2016).

    Article 
    ADS 

    Google Scholar 

  • Huber, D. P. et al. Vegetation and precipitation shifts interact to alter organic and inorganic carbon storage in desert soils. Ecosphere 10, e02655. https://doi.org/10.1002/ecs2.2655 (2019).

    Article 

    Google Scholar 

  • Knight, D. H., Jones, G. P., Reiners, W. A. & Romme, W. H. Mountains and Plains: The Ecology of Wyoming Landscapes (Yale University Press, 2014).

    Google Scholar 

  • Patton, N. R., Lohse, K. A., Seyfried, M. S., Godsey, S. E. & Parsons, S. Topographic controls on soil organic carbon on soil mantled landscapes. Sci. Rep. 9, 6390. https://doi.org/10.1038/s41598-019-42556-5 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schwabedissen, S. G., Lohse, K. A., Reed, S. C., Aho, K. A. & Magnuson, T. S. Nitrogenase activity by biological soil crusts in cold sagebrush steppe ecosystems. Biogeochemistry 134, 57–76. https://doi.org/10.1007/s10533-017-0342-9 (2017).

    Article 
    CAS 

    Google Scholar 

  • You, Y. et al. Biological soil crust bacterial communities vary along climatic and shrub cover gradients within a sagebrush steppe ecosystem. Front. Microbiol. 12, 2365. https://doi.org/10.3389/fmicb.2021.569791 (2021).

    Article 

    Google Scholar 

  • Burke, I. C., Reiners, W. A. & Olson, R. K. Topographic control of vegetation in a mountain big sagebrush steppe. Vegetation 84, 77–86 (1989).

    Article 

    Google Scholar 

  • Poulos, M. J., Pierce, J. L., Flores, A. N. & Benner, S. G. Hillslope asymmetry maps reveal widespread, multi-scale organization. Geophys. Res. Lett. 39, 6. https://doi.org/10.1029/2012GL051283 (2012).

    Article 

    Google Scholar 

  • Smith, T. & Bookhagen, B. Climatic and biotic controls on topographic asymmetry at the global scale. J. Geophys. Res.: Earth Surf. 126, e2020JF005692. https://doi.org/10.1029/2020JF005692Received22 (2021).

    Article 
    ADS 

    Google Scholar 

  • Seyfried, M., Link, T., Marks, D. & Murdock, M. Soil temperature variability in complex terrain measured using fiber-optic distributed temperature sensing. Vadose Zone J. 15, 6. https://doi.org/10.2136/vzj2015.09.0128 (2016).

    Article 

    Google Scholar 

  • Chambers, J. C. et al. Resilience and resistance of sagebrush ecosystems: Implications for state and transition models and management treatments. Rangel. Ecol. Manage. 67, 440–454. https://doi.org/10.2111/REM-D-13-00074.1 (2014).

    Article 

    Google Scholar 

  • Chambers, J. C. et al. Operationalizing resilience and resistance concepts to address invasive grass-fire cycles. Front. Ecol. Evol. 7, 2369. https://doi.org/10.3389/fevo.2019.00185 (2019).

    Article 

    Google Scholar 

  • Boehm, A. R. et al. Slope and aspect effects on seedbed microclimate and germination timing of fall-planted seeds. Rangel. Ecol. Manage. 75, 58–67. https://doi.org/10.1016/j.rama.2020.12.003 (2021).

    Article 

    Google Scholar 

  • Sankey, J. B., Germino, M. J., Sankey, T. T. & Hoover, A. N. Fire effects on the spatial patterning of soil properties in sagebrush steppe, USA: A meta-analysis. Int. J. Wildl. Fire 21, 545–556. https://doi.org/10.1071/WF11092 (2012).

    Article 

    Google Scholar 

  • Fellows, A., Flerchinger, G., Seyfried, M. S. & Lohse, K. A. Rapid recovery of mesic mountain big sagebrush gross production and respiration following prescribed fire. Ecosystems 21, 1283–1294. https://doi.org/10.1007/s10021-017-0218-9 (2018).

    Article 

    Google Scholar 

  • Vega, S. P. et al. Interaction of wind and cold-season hydrologic processes on erosion from complex topography following wildfire in sagebrush steppe. Earth Surf. Process. Landforms https://doi.org/10.1002/esp.4778 (2019).

    Article 

    Google Scholar 

  • Xie, J., Li, Y., Zhai, C., Li, C. & Lan, Z. CO2 absorption by alkaline soils and its implication to the global carbon cycle. Environ. Geol. 56, 953–961 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Stanbery, C., Pierce, J. L., Benner, S. G. & Lohse, K. On the rocks: Quantifying storage of inorganic soil carbon on gravels and determining pedon-scale variability. CATENA 157, 436–442. https://doi.org/10.1016/j.catena.2017.06.011 (2017).

    Article 
    CAS 

    Google Scholar 

  • Stanbery, C. et al. Controls on the presence and concentration of soil inorganic carbon in a semi-arid watershed. CATENA https://doi.org/10.2139/ssrn.4267018 (2023).

    Article 

    Google Scholar 

  • Cerling, T. E. & Quade, J. Stable carbon and oxygen isotopes in soil carbonates. Geophys. Monogr. 78, 217–231 (1993).

    ADS 

    Google Scholar 

  • Tappa, D. J., Kohn, M. J., McNamara, J. P., Benner, S. G. & Flores, A. N. Isotopic composition of precipitation in a topographically steep, seasonally snow-dominated watershed and implications of variations from the global meteoric water line. Hydrol. Process. 30, 4582–4592. https://doi.org/10.1002/hyp.10940 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Salomons, W., Goudie, A. & Mook, W. G. Isotopic composition of calcrete deposits from Europe, Africa and India. Earth Surf. Process. 3, 43–57. https://doi.org/10.1002/esp.3290030105 (1978).

    Article 
    CAS 

    Google Scholar 

  • Salomons, W. & Mook, W. G. In Handbook of Environmental Isotope Geochemistry (eds P. Fritz & J. Fontes) Ch. 6, 241–269 (Elsevier, 1986).

  • Bodí, M. B. et al. Wildland fire ash: Production, composition and eco-hydro-geomorphic effects. Earth Sci. Rev. 130, 103–127. https://doi.org/10.1016/j.earscirev.2013.12.007 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kéraval, B. et al. Soil carbon dioxide emissions controlled by an extracellular oxidative metabolism identifiable by its isotope signature. Biogeosciences 13, 6353–6362. https://doi.org/10.5194/bg-13-6353-2016 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Goforth, B. R., Graham, R. C., Hubbert, K. R., Zanner, C. W. & Minnich, R. A. Spatial distribution and properties of ash and thermally altered soils after high-severity forest fire, southern California. Int. J. Wildland Fire 14, 343–354 (2005).

    Article 

    Google Scholar 

  • Glossner, K. L. et al. Long-term suspended sediment and particulate organic carbon yields from the Reynolds Creek Experimental Watershed and Critical Zone Observatory. Hydrol. Process. 36, e14484. https://doi.org/10.1002/hyp.14484 (2022).

    Article 
    CAS 

    Google Scholar 

  • Seyfried, M. S. et al. Reynolds creek experimental watershed and critical zone observatory. Vadoze Zone J. 17, 180129. https://doi.org/10.2136/vzj2018.07.0129 (2018).

    Article 
    CAS 

    Google Scholar 

  • McIntyre, D. H. Cenozoic geology of the Reynolds Creek Experimental Watershed, Owyhee County, Idaho (Idaho Bureau of Mines and Geology, 1972).

  • Earth Resources Observation and Science (EROS) Center, U. Image of the week: Burned Area Analysis for the Soda Fire, Idaho, https://eros.usgs.gov/media-gallery/image-of-the-week/burned-area-analysis-the-soda-fire-idaho (2015).

  • Jenny, H. Factors of Soil Formation (McGraw-Hill, 1941).

    Book 

    Google Scholar 

  • Kormos, P. R. et al. 31 years of hourly spatially distributed air temperature, humidity, and precipitation amount and phase from Reynolds Critical Zone Observatory. Earth Syst. Sci. Data 10, 1197–1205. https://doi.org/10.5194/essd-10-1197-2018 (2018).

    Article 
    ADS 

    Google Scholar 

  • Thomas, G. W. In Methods in Soil Analysis. Part 3. Chemical Methods (ed Sparks, D. L. ) (Soil Science Society of America and American Society of Agronomy, 1996).

  • Brodie, C. R. et al. Evidence for bias in C and N concentrations and δ13C composition of terrestrial and aquatic organic materials due to pre-analysis acid preparation methods. Chem. Geol. 282, 67–83. https://doi.org/10.1016/j.chemgeo.2011.01.007 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Patton, N. P., Lohse, K. A., Seyfried, M. S., Will, R. & Benner, S. G. Lithology and coarse fraction adjusted bulk density estimates for determining total organic carbon stocks in dryland soils. Geoderma 337, 844–852. https://doi.org/10.1016/j.geoderma.2018.10.036 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • McGuire, L. A., Rasmussen, C., Youberg, A. M., Sanderman, J. & Fenerty, B. Controls on the Spatial distribution of near-surface pyrogenic carbon on hillslopes 1 year following wildfire. J. Geophys. Res.: Earth Surf. 126, e2020JF005996. https://doi.org/10.1029/2020JF005996 (2021).

    Article 
    ADS 

    Google Scholar 

  • Jiménez-González, M. A. et al. Spatial distribution of pyrogenic carbon in Iberian topsoils estimated by chemometric analysis of infrared spectra. Sci. Total Env. 790, 148170. https://doi.org/10.1016/j.scitotenv.2021.148170 (2021).

    Article 
    CAS 

    Google Scholar 

  • Baldock, J. A. et al. Quantifying the allocation of soil organic carbon to biologically significant fractions. Soil Res. 51, 561–576. https://doi.org/10.1071/SR12374 (2013).

    Article 
    CAS 

    Google Scholar 

  • Sanderman, J. et al. Soil organic carbon fractions in the Great Plains of the United States: An application of mid-infrared spectroscopy. Biogeochemistry 156, 97–114. https://doi.org/10.1007/s10533-021-00755-1 (2021).

    Article 
    CAS 

    Google Scholar 

  • Sherrod, L. A., Dunn, G., Peterson, G. A. & Kolberg, R. L. Inorganic carbon analysis by modified pressure-calcimeter method. Soil Sci. Soc. Am. J. 66, 299–305 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Mikutta, R., Kleber, M., Kaiser, K. & Jahn, R. Review. Soil Sci. Soc. Am. J. 69, 120–135. https://doi.org/10.2136/sssaj2005.0120 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Risk, D., Nickerson, N., Creelman, C., McArthur, G. & Owens, J. Forced Diffusion soil flux: A new technique for continuous monitoring of soil gas efflux. Agric. For. Meteorol. 151, 1622–1631. https://doi.org/10.1016/j.agrformet.2011.06.020 (2011).

    Article 
    ADS 

    Google Scholar 

  • Fierer, N. & Schimel, J. P. Effects of drying–rewetting frequency on soil carbon and nitrogen transformations. Soil Biol. Biochem. 34, 777–787. https://doi.org/10.1016/S0038-0717(02)00007-X (2002).

    Article 
    CAS 

    Google Scholar 

  • Dane, J. H., Topp, G. C. & Campbell, G. S. In Methods of Soil Analysis: Physical Methods. Vol. 4 (ed SSSA) 721–738 (2002).


  • Source: Ecology - nature.com

    Manufacturing a cleaner future

    MIT community in 2022: A year in review