Randolph, S. E. & Rogers, D. J. The arrival, establishment and spread of exotic diseases: Patterns and predictions. Nat. Rev. Microbiol. 8, 361–371 (2010).
Google Scholar
Boussès, P., Dehecq, J. S., Brengues, C. & Fontenille, D. Inventaire actualisé des moustiques (Diptera : Culicidae) de l’île de La Réunion, océan Indien. Bulletin de la Société de pathologie exotique 106, 113–125 (2013).
Google Scholar
Delatte, H. et al. Geographic distribution and developmental sites of Aedes albopictus (Diptera: Culicidae) during a Chikungunya epidemic event. Vector-Borne Zoonotic Dis. 8, 25–34 (2008).
Google Scholar
Gomard, Y., Lebon, C., Mavingui, P. & Atyame, C. M. Contrasted transmission efficiency of Zika virus strains by mosquito species Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Reunion Island. Parasites Vectors https://doi.org/10.1186/s13071-020-04267-z (2020).
Google Scholar
Vazeille, M., Dehecq, J.-S. & Failloux, A.-B. Vectorial status of the Asian tiger mosquito Aedes albopictus of La Réunion Island for Zika virus: Ae. Albopictus of la réunion island. Med. Vet. Entomol. 32, 251–254 (2018).
Google Scholar
Youssouf, H. et al. Rift valley fever outbreak, Mayotte, France, 2018–2019. Emerg. Infect. Dis. 26, 769–772 (2020).
Google Scholar
Sang, R. et al. Rift valley fever virus epidemic in Kenya, 2006/2007: The entomologic investigations. Am. J. Trop. Med. Hyg. 83, 28–37 (2010).
Google Scholar
Cardinale, E. et al. West Nile virus infection in horses, Indian ocean. Comp. Immunol. Microbiol. Infect. Dis. 53, 45–49 (2017).
Google Scholar
Bouyer, J., Yamada, H., Pereira, R., Bourtzis, K. & Vreysen, M. J. B. Phased conditional approach for mosquito management using sterile insect technique. Trends Parasitol. 36, 325–336 (2020).
Google Scholar
Lees, R. S., Carvalho, D. O. & Bouyer, J. Potential Impact of Integrating the Sterile Insect Technique into the Fight against Disease-Transmitting Mosquitoes 1081–1118 (CRC Press, 2021). https://doi.org/10.1201/9781003035572-33.
Google Scholar
Gouagna, L. C. et al. Strategic approach, advances, and challenges in the development and application of the SIT for area-wide control of Aedes albopictus mosquitoes in Reunion Island. Insects 11, 770 (2020).
Google Scholar
Bouyer, J. & Lefrançois, T. Boosting the sterile insect technique to control mosquitoes. Trends Parasitol. 30, 271–273 (2014).
Google Scholar
Soghigian, J. et al. Genetic evidence for the origin of Aedes aegypti, the yellow fever mosquito, in the southwestern Indian Ocean. Mol. Ecol. 29, 3593–3606 (2020).
Google Scholar
Bouyer, J. & Vreysen, M. J. B. Yes, irradiated sterile male mosquitoes can be sexually competitive!. Trends Parasitol. 36, 877–880 (2020).
Google Scholar
Owino, E. A. et al. Field evaluation of natural human odours and the biogent-synthetic lure in trapping Aedes aegypti, vector of dengue and chikungunya viruses in Kenya. Parasites Vectors 7, 451 (2014).
Google Scholar
Kröckel, U., Andreas, R., Eiras, Á. & Geier, M. New tools for surveillance of adult yellow fever mosquitoes: Comparison of trap catches with human landing rates in an urban environment. J. Am. Mosq. Control Assoc. 22, 229–238 (2006).
Google Scholar
Haramboure, M. et al. Modelling the control of Aedes albopictus mosquitoes based on sterile males release techniques in a tropical environment. Ecol. Model. 424, 109002 (2020).
Google Scholar
Farajollahi, A. et al. Field efficacy of BG-sentinel and industry-standard traps for Aedes albopictus (Diptera: Culicidae) and West Nile Virus Surveillance. J. Med. Entomol. 46, 919–925 (2009).
Google Scholar
Roiz, D. et al. Trapping the Tiger: Efficacy of the novel BG-sentinel 2 with several attractants and carbon dioxide for collecting Aedes albopictus (Diptera: Culicidae) in Southern France. J. Med. Entomol. 53, 460–465 (2016).
Google Scholar
Wilke, A. B. B. et al. Assessment of the effectiveness of BG-sentinel traps baited with CO2 and BG-Lure for the surveillance of vector mosquitoes in miami-dade County Florida. PLoS ONE 14, e0212688 (2019).
Google Scholar
Staunton, K. M. et al. Effect of BG-lures on the male aedes (Diptera: Culicidae) sound trap capture rates. J. Med. Entomol. 58, 2425–2431 (2021).
Google Scholar
Visser, T. M. et al. Optimisation and field validation of odour-baited traps for surveillance of Aedes aegypti adults in Paramaribo Suriname. Parasites Vectors 13, 121 (2020).
Google Scholar
Owino, E. A. et al. An improved odor bait for monitoring populations of Aedes aegypti-vectors of dengue and chikungunya viruses in Kenya. Parasites Vectors 8, 253 (2015).
Google Scholar
Le Goff, G. et al. Comparison of efficiency of BG-sentinel traps baited with mice, mouse-litter, and CO2 lures for field sampling of male and female aedes albopictus mosquitoes. Insects 8, 95 (2017).
Google Scholar
Nielsen, G. D., Petersen, S. H., Vinggaard, A. M., Hansen, L. F. & Wolkoff, P. Ventilation, CO2 production, and CO2 exposure effects in conscious, restrained CF-1 mice. Pharmacol. Toxicol. 72, 163–168 (1993).
Google Scholar
Gouagna, L. C., Dehecq, J.-S., Fontenille, D., Dumont, Y. & Boyer, S. Seasonal variation in size estimates of Aedes albopictus population based on standard mark–release–recapture experiments in an urban area on Reunion Island. Acta Trop. 143, 89–96 (2015).
Google Scholar
Dekker, T., Geier, M. & Cardé, R. T. Carbon dioxide instantly sensitizes female yellow fever mosquitoes to human skin odours. J. Exp. Biol. 208, 2963–2972 (2005).
Google Scholar
Grant, A. J. & O’Connell, R. J. Age-related changes in female mosquito carbon dioxide detection. J. Med. Entomol. 44, 617–623 (2007).
Google Scholar
Bohbot, J. & Vogt, R. G. Antennal expressed genes of the yellow fever mosquito (Aedes aegypti L.); characterization of odorant-binding protein 10 and takeout. Insect Biochem. Mol. Biol. 35, 961–979 (2005).
Google Scholar
Hartberg, W. K. Observations on the mating behaviour of Aedes aegypti in nature. Bull. World Health Organ. 45, 847 (1971).
Google Scholar
Cator, L. J., Arthur, B. J., Ponlawat, A. & Harrington, L. C. Behavioral observations and sound recordings of free-flight mating swarms of Ae. aegypti (Diptera: Culicidae) in Thailand. J. Med. Entomol. 48, 941–946 (2011).
Google Scholar
Lacroix, R., Delatte, H., Hue, T. & Reiter, P. Dispersal and survival of male and female Aedes albopictus(Diptera: Culicidae) on Réunion Island. J. Med. Entomol. 46, 1117–1124 (2009).
Google Scholar
Pombi, M. et al. Field evaluation of a novel synthetic odour blend and of the synergistic role of carbon dioxide for sampling host-seeking Aedes albopictus adults in Rome, Italy. Parasites Vectors 7, 580 (2014).
Google Scholar
Cilek, J. E., Hallmon, C. F. & Johnson, R. Semi-field comparison of the Bg Lure, nonanal, and 1-Octen-3-OL to attract adult mosquitoes in northwestern Florida. J. Am. Mosq. Control Assoc. 27, 393–397 (2011).
Google Scholar
Bagny Beilhe, L., Delatte, H., Juliano, S. A., Fontenille, D. & Quilici, S. Ecological interactions in Aedes species on Reunion Island. Med. Vet. Entomol. 27, 387–397 (2013).
Google Scholar
Golstein, C., Boireau, P. & Pagès, J.-C. Benefits and limitations of emerging techniques for mosquito vector control. Comptes Rendus Biol. 342, 270–272 (2019).
Google Scholar
Maïga, H., Gilles, J. R. L., Lees, R. S., Yamada, H. & Bouyer, J. Demonstration of resistance to satyrization behavior in Aedes aegypti from La Réunion island. Parasite 27, 22 (2020).
Google Scholar
Zeileis, A., Kleiber, C. & Jackman, S. Regression models for count data in R. J. Stat. Soft. https://doi.org/10.18637/jss.v027.i08 (2008).
Google Scholar
Fawaz, E. Y., Allan, S. A., Bernier, U. R., Obenauer, P. J. & Diclaro, J. W. Swarming mechanisms in the yellow fever mosquito: Aggregation pheromones are involved in the mating behavior of Aedes aegypti. J. Vector Ecol. 39, 347–354 (2014).
Google Scholar
Guthery, F. S., Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: A practical information-theoretic approach. J. Wildl. Manag. 67, 655 (2003).
Google Scholar
Manly, B. F. J. Randomization, Bootstrap and Monte Carlo Methods in Biology 399 (CRC Press/Chapman & Hall, 2006). https://doi.org/10.1201/9781315273075.
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2022).
Barton, K. MuMIn: Multi-Model Inference. (R-Forge, 2022).
Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 496 (Springer-Verlag, 2002).
Google Scholar
Xie, Y., Dervieux, C. & Riederer, E. R Markdown Cookbook (Chapman; Hall/CRC, 2020). https://doi.org/10.1201/9781003097471.
Google Scholar
Source: Ecology - nature.com