in

Optimizing plant density and balancing NPK inputs in combination with innovative fertilizer product for sustainable maize production in North China Plain

  • Liu, H. et al. Optimal nitrogen input for higher efficiency and lower environmental impacts of winter wheat production in China. Agr. Ecosyst. Environ. 224, 1–11 (2016).

    Article 

    Google Scholar 

  • Guang-hao, L., Gui-gen, C., Wei-ping, L. & Da-lei, L. Differences of yield and nitrogen use efficiency under different applications of slow-release fertilizer in spring maize. J. Integr. Agric. 20(2), 554–564 (2021).

    Article 

    Google Scholar 

  • Kumar, V. V. Role of Rhizospheric Microbes in Soil 377–398 (Springer, 2018).

    Book 

    Google Scholar 

  • Ullah, A. et al. Factors affecting the adoption of organic farming in Peshawar-Pakistan. Agric. Sci. 6(06), 587–593 (2015).

    Google Scholar 

  • Cui, Z. et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555(7696), 363–366 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528(7580), 51–59 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Alzaidi, A. A., Baig, M. B. & Elhag, E. A. An investigation into the farmers ’ attitudes towards organic farming in Riyadh Region–Kingdom of Saudi Arabia. Bulg. J. Agric. Sci. 19(3), 426–431 (2013).

    Google Scholar 

  • Zhihui, W. et al. Combined applications of nitrogen and phosphorus fertilizers with manure increase maize yield and nutrient uptake via stimulating root growth in a long-term experiment. Pedosphere 26(1), 62–73 (2016).

    Article 
    CAS 

    Google Scholar 

  • Guang-hao, L., Gui-gen, C., Wei-ping, L. & Da-lei, L. Differences of yield and nitrogen use efficiency under different applications of slow release fertilizer in spring maize. J. Integr. Agric. 20(2), 554–564 (2020).

    Google Scholar 

  • Zant, W. Is organic fertilizer going to be helpful in bringing a green revolution to sub-Saharan Africa? Economic explorations for Malawi agriculture (Working Paper). International House Hold Survey Network (2010).

  • Barman, M., Paul, S., Choudhury, A. G., Roy, P. & Sen, J. Biofertilizer as prospective input for sustainable agriculture in India. Int. J. Curr. Microbiol. App. Sci. 6(11), 1177–1186 (2017).

    Article 

    Google Scholar 

  • Kalhapure, A. H., Shete, B. T. & Dhonde, M. B. Integrated nutrient management in maize (Zea Mays L.) for increasing production with sustainability. Int. J. Agric. Food Sci. Technol. 4(3), 2249–3050 (2013).

    Google Scholar 

  • Nazli, R. I., Kuşvuran, A., Inal, I., Demirbaş, A. & Tansi, V. Effects of different organic materials on forage yield and quality of silage maize (Zea mays L.). Turk. J. Agric. For. 38(1), 23–31 (2014).

    CAS 
    Article 

    Google Scholar 

  • Niu, Z. et al. Total factor productivity growth in china’s corn farming: an application of generalized productivity indicator. J. Bus. Econ. Manag. 22(5), 1189–1208 (2021).

    Article 

    Google Scholar 

  • van Wesenbeeck, C. F. A., Keyzer, M. A., van Veen, W. C. M. & Qiu, H. Can China’s overuse of fertilizer be reduced without threatening food security and farm incomes?. Agric. Syst. 190, 103093 (2021).

    Article 

    Google Scholar 

  • Ji, Y., Liu, H. & Shi, Y. Will China’s fertilizer use continue to decline? Evidence from LMDI analysis based on crops, regions and fertilizer types. PLoS ONE 15, e0237234 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jiao, X. et al. Grain production versus resource and environmental costs: towards increasing sustainability of nutrient use in China. J. Exp. Bot. 67(17), 4935–4949 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sher, A. et al. Response of maize grown under high plant density; performance, issues and management: a critical review. Adv. Crop Sci. Technol. 5(3), 1–8 (2017).

    Article 

    Google Scholar 

  • De-yang, S. H. I. et al. Increased plant density and reduced N rate lead to more grain yield and higher resource utilization in summer maize. J. Integr. Agric. 15(11), 2515–2528 (2016).

    Article 

    Google Scholar 

  • Du, X., Wang, Z., Lei, W. & Kong, L. Increased planting density combined with reduced nitrogen rate to achieve high yield in maize. Sci. Rep. 11(1), 1–12 (2021).

    CAS 
    Article 

    Google Scholar 

  • Li, T., Zhang, W., Yin, J., Chadwick, D., Norse, D., Lu, Y., Liu, X., Chen, X., Zhang, F., Powlson, D., & Dou, Z. Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem (2017).

  • Adu-gyamfi, R. et al. One-time fertilizer briquettes application for maize production in savanna agroecologies of Ghana. Soil Fertil. Crop Prod. 111(6), 3339–3350 (2019).

    CAS 

    Google Scholar 

  • Jiang, C. et al. Optimal nitrogen application rates of one-time root zone fertilization and the effect of reducing nitrogen application on summer maize. Sustainability 11, 2979 (2019).

    Article 

    Google Scholar 

  • Jiang, C. et al. One-time root-zone N fertilization increases maize yield, NUE and reduces soil N losses in lime concretion black soil. Sci. Rep. 8(1), 1–10 (2018).

    ADS 

    Google Scholar 

  • Li, G., Zhao, B., Dong, S., Liu, P. & Vyn, T. J. Impact of controlled release urea on maize yield and nitrogen use efficiency under different water conditions. PLoS ONE 12(7), 1–16 (2017).

    Google Scholar 

  • Sikora, J. et al. Assessment of the efficiency of nitrogen slow-release fertilizers in integrated production of carrot depending on fertilization strategy. Sustainability (Switzerland) 12(5), 1–10 (2020).

    Google Scholar 

  • Tian, C. et al. Effects of a controlled-release fertilizer on yield, nutrient uptake, and fertilizer usage efficiency in early ripening rapeseed (Brassica napus L.). J. Zhejian Univ. Sci. B (Biomed. Biotechnol.) 17(14), 775–786 (2016).

    CAS 
    Article 

    Google Scholar 

  • Tong, D. & Xu, R. Effects of urea and ( NH4)2SO4 on nitrification and acidification of Ultisols from Southern China. J. Environ. Sci. 24(4), 682–689 (2012).

    CAS 
    Article 

    Google Scholar 

  • El-rokiek, K. G., Ahmed, S. A. & Abd-elsamad, E. E. H. Effect of adding urea or ammonium sulphate on some herbicides efficiency in controlling weeds in onion plants. J. Am. Sci. 6(11), 536–543 (2010).

    Google Scholar 

  • FAO. Guidelines for soil description. Enhanced Recovery After Surgery, (2006).

  • Landon, J. Booker Tropical Soil manual: A Handbook for Soil Survey and Agriculture Land Evaluation in the Tropics and Subtropics (2013).

  • Zhao, R. F. et al. Fertilization and nitrogen balance in a wheat-maize rotation system in North China. Agron. J. 98(4), 938–945 (2006).

    CAS 
    Article 

    Google Scholar 

  • Huang, S. et al. Estimation of nitrogen supply for summer maize production through a long-term field trial in china. Agronomy 11(7), 1358 (2021).

    CAS 
    Article 

    Google Scholar 

  • Dong, Y. J. et al. Effects of new coated release fertilizer on the growth of maize. J. Soil Sci. Plant Nutr. 16(3), 637–649 (2016).

    CAS 

    Google Scholar 

  • Ngosong, C., Bongkisheri, V., Tanyi, C. B., Nanganoa, L. T. & Tening, A. S. Optimizing nitrogen fertilization regimes for sustainable maize (Zea mays L.) production on the volcanic soils of Buea Cameroon. Adv. Agric. 2019, 1–8 (2019).

    Google Scholar 

  • Su, W., Ahmad, S., Ahmad, I. & Han, Q. Nitrogen fertilization affects maize grain yield through regulating nitrogen uptake, radiation and water use efficiency, photosynthesis and root distribution. PeerJ 8, 1–21 (2020).

    CAS 

    Google Scholar 

  • Sainju, U. M, Ghimire, R., & Pradhan, G.P. Nitrogen Fertilization I: Impact on Crop, Soil, and Environment. IntechOpen https://doi.org/10.5772/intechopen.86028 (2020).

  • Sha, Z. et al. Effect of N stabilizers on fertilizer-N fate in the soil-crop system: a meta- analysis. Agr. Ecosyst. Environ. 2020, 290 (2019).

    Google Scholar 

  • Chen, K. & Vyn, T. J. Post-silking factor consequences for N efficiency changes over 38 years of commercial maize hybrids. Front. Plant Sci. https://doi.org/10.3389/fpls.2017.01737 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jia, X. P. et al. Farmer’s adoption of improved nitrogen management strategies in maize production in China: an experimental knowledge training. J. Integr. Agric. 12(2), 364–373 (2013).

    Article 

    Google Scholar 

  • Amanullah,. Rate and timing of nitrogen application influence partial factor productivity and agronomic NUE of maize (Zea mays L.) planted at low and high densities on calcareous soil in northwest Pakistan. J. Plant Nutr. 39(5), 683–690 (2016).

    CAS 
    Article 

    Google Scholar 

  • Draman, A., Almas, L. K. Partial factor productivity, agronomic efficiency, and economic analyses of maize in wheat-maize cropping system in Pakistan. Southern Agricultural Economics Association Annual Meetings, 2009 (January 2009).

  • Yan, P. et al. Interaction between plant density and nitrogen management strategy in improving maize grain yield and nitrogen use efficiency on the North China Plain. Agric. Sci. 154, 978–988 (2016).

    Article 

    Google Scholar 

  • Oenema, O. Nitrogen use efficiency (NUE) an indicator for the utilization of nitrogen in food systems. EU Nitrogen Expert Panel, January 2017, 1–4 (2015).

  • Venterea, R. T., Coulter, J. A. & Dolan, M. S. Evaluation of intensive “4R” strategies for decreasing nitrous oxide emissions and nitrogen surplus in rainfed corn. J. Environ. Qual. 45(4), 1186–1195 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhang, C., Ju, X., Powlson, D., Oenema, O. & Smith, P. Nitrogen surplus benchmarks for controlling N pollution in the main cropping systems of China. Environ. Sci. Technol. 53(12), 6678–6687 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fernández, C., Koop, G. & Steel, M. F. J. Multiple-output production with undesirable outputs multiple-output production with undesirable outputs : an application to nitrogen surplus in agriculture. J. Am. Stat. Assoc. 97(458), 432–442 (2013).

    MATH 
    Article 

    Google Scholar 

  • Børsting, C. F., Kristensen, T., Misciattelli, L., Hvelplund, T. & Weisbjerg, M. R. Reducing nitrogen surplus from dairy farms. Effects of feeding and management. Livest. Prod. Sci. 83(2–3), 165–178 (2003).

    Article 

    Google Scholar 

  • Liang, K. et al. Reducing nitrogen surplus and environmental losses by optimized nitrogen and water management in double rice cropping system of South China. Agric. Ecosyst. Environ. 286, 106680 (2019).

    CAS 
    Article 

    Google Scholar 

  • Klages, S. et al. Nitrogen surplus-a unified indicator for water pollution in Europe?. Water (Switzerland) 12(4), 1197 (2020).

    CAS 

    Google Scholar 

  • Muratoglu, A. Grey water footprint of agricultural production: an assessment based on nitrogen surplus and high-resolution leaching runoff fractions in Turkey. Sci. Total Environ. 742, 140553 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Niemiec, M. & Komorowska, M. The use of slow-release fertilizers as a part of optimization of celeriac production technology. Agric. Eng. 22(2), 59–68 (2018).

    Google Scholar 

  • Ranum, P., Peña-Rosas, J. P. & Garcia-Casal, M. N. Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 1312(1), 105–112 (2014).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • HLPE. Biofules and food security. High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security, Rome (2013).

  • Karp, A., Beale, M. H., Beaudoin, F. & Eastmond, P. J. Growing innovations for the bioeconomy. Nat. Plants https://doi.org/10.1038/nplants.2015.193 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Chavarria, H., Trigo, E., Villarreal, F., Elverdin, P., & Piñeiro, V. Policy brief bioeconomy: a sustainable development strategy task force 10 sustainable energy, water, and food systems. T20, Saudi Arabia (2020).


  • Source: Ecology - nature.com

    Predicting the risk of pipe failure using gradient boosted decision trees and weighted risk analysis

    Honey bee symbiont buffers larvae against nutritional stress and supplements lysine