in

Sex-specific movement ecology of the shortest-lived tetrapod during the mating season

  • Dunham, A. E. & Miles, D. B. Patterns of covariation in life history traits of squamate reptiles: The effects of size and phylogeny reconsidered. Am. Nat. 126, 231–257 (1985).

    Article 

    Google Scholar 

  • Dobson, F. S. & Oli, M. K. Fast and slow life histories of mammals. Ecoscience 14, 292–299 (2007).

    Article 

    Google Scholar 

  • Sæther, B. E. Pattern of covariation between life-history traits of European birds. Nature 1, 616–617 (1988).

    ADS 
    Article 

    Google Scholar 

  • Promislow, D. E. L. & Harvey, P. H. Living fast and dying young: A comparative analysis of life-history variation among mammals. J. Zool. 220, 417–437 (1990).

    Article 

    Google Scholar 

  • De Magalhaes, J. P. & Costa, J. A database of vertebrate longevity records and their relation to other life—history traits. J. Evol. Biol. 22, 1770–1774 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Fisher, D. O., Dickman, C. R., Jones, M. E. & Blomberg, S. P. Sperm competition drives the evolution of suicidal reproduction in mammals. Proc. Natl. Acad. Sci. USA 44, 17910–17914 (2013).

    ADS 
    Article 

    Google Scholar 

  • Blanco, M. A. & Sherman, P. W. Maximum longevities of chemically protected and non-protected fishes, reptiles, and amphibians support evolutionary hypotheses of aging. Mech. Ageing Dev. 126, 794–803 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shine, R. & Charnov, E. L. Patterns of survival, growth, and maturation in snakes and lizards. Am. Nat. 139, 1257–1269 (1992).

    Article 

    Google Scholar 

  • Pedrono, M. et al. Using a surviving lineage of Madagascar’s vanished megafauna for ecological restoration. Biol. Cons. 159, 501–506 (2013).

    Article 

    Google Scholar 

  • Karsten, K. B., Andriamandimbiarisoa, L. N., Fox, S. F. & Raxworthy, C. J. A unique life history among tetrapods: An annual chameleon living mostly as an egg. Proc. Natl. Acad. Sci. USA 105, 8980–8984 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Uetz, P., Freed, P. & Hošek, J. (eds) The reptile database. http://www.reptile-database.org (2020).

  • Glaw, F. & Vences, M. A Field Guide to the Amphibians and Reptiles of Madagascar (Vences and Glaw, 2007).

    Google Scholar 

  • Anderson, C. V. Off like a shot: Scaling of ballistic tongue projection reveals extremely high performance in small chameleons. Sci. Rep. 6, 18625 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Keren-Rotem, T., Levy, N., Wolf, L., Bouskila, A. & Geffen, E. Male preference for sexual signalling over crypsis is associated with alternative mating tactics. Anim. Behav. 117, 43–49 (2016).

    Article 

    Google Scholar 

  • Keren-Rotem, T., Levy, N., Wolf, L., Bouskila, A. & Geffen, E. Alternative mating tactics in male chameleons (Chamaeleo chamaeleon) are evident in both long-term body color and short-term courtship pattern. PLoS ONE 11, e0159032 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Ligon, R. A. & McGraw, K. J. Chameleons communicate with complex colour changes during contests: Different body regions convey different information. Biol. Lett. 9, 20130892 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Prötzel, D. et al. Widespread bone-based fluorescence in chameleons. Sci. Rep. 8, 698 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Tolley, K. A. & Herrel, A. (eds) The Biology of Chameleons (University of California Press, 2014).

    Google Scholar 

  • Andreone, F., Guarino, F. M. & Randrianirina, J. E. Life history traits, age profile, and conservation of the panther chameleon, Furcifer pardalis (Cuvier 1829), at Nosy Be, NW Madagascar. Trop. Zool. 18, 209–225 (2005).

    Article 

    Google Scholar 

  • Tessa, G., Glaw, F. & Andreone, F. Longevity in Calumma parsonii, the World’s largest chameleon. Exp. Geront. 89, 41–44 (2017).

    Article 

    Google Scholar 

  • Karsten, K. B., Andriamandimbiarisoa, L. N., Fox, S. F. & Raxworthy, C. J. Sexual selection on body size and secondary sexual characters in 2 closely related, sympatric chameleons in Madagascar. Behav. Ecol. 20, 1079–1088 (2009).

    Article 

    Google Scholar 

  • Eckhardt, F., Kappeler, P. M. & Kraus, C. Highly variable lifespan in an annual reptile, Labord’s chameleon (Furcifer labordi). Sci. Rep. 7, 11397 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Eckhardt, F., Kraus, C. & Kappeler, P. M. Life histories, demographies and population dynamics of three sympatric chameleon species (Furcifer spp.) from western Madagascar. Amphibia-Reptilia 40, 41–54 (2018).

    Article 

    Google Scholar 

  • Karsten, K. B., Andriamandimbiarisoa, L. N., Fox, S. F. & Raxworthy, C. J. Social behavior of two species of chameleons in Madagascar: Insights into sexual selection. Herpetologica 65, 54–69 (2009).

    Article 

    Google Scholar 

  • Emlen, S. T. & Oring, L. W. Ecology, sexual selection, and the evolution of mating systems. Science 197, 215–223 (1977).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chiaverano, L. M., Wright, M. J. & Holland, B. S. Movement behavior is habitat dependent in invasive Jackson’s chameleons in Hawaii. J. Herpetol. 48, 471–479 (2014).

    Article 

    Google Scholar 

  • Smith, D. et al. Observations on nesting and clutch size in Furcifer oustaleti (Oustalet’s chameleon) in South Florida. Southeast Nat. 15, 75–88 (2016).

    Article 

    Google Scholar 

  • Van Kleeck, M. J., Smith, T. A. & Holland, B. S. Paedophagic cannibalism, resource partitioning, and ontogenetic habitat use in an invasive lizard. Ethol. Ecol. Evol. 30, 497–514 (2018).

    Article 

    Google Scholar 

  • Tolley, K. A., Raw, R. N., Altwegg, R. & Measey, J. G. Chameleons on the move: Survival and movement of the Cape dwarf chameleon, Bradypodion pumilum, within a fragmented urban habitat. Afr. Zool. 45, 99–106 (2010).

    Article 

    Google Scholar 

  • Cuadrado, M. The influence of female size on the extent and intensity of mate guarding by males in Chamaeleo chamaeleon. J. Zool. 246, 351–358 (1998).

    Article 

    Google Scholar 

  • Cuadrado, M. Mating asynchrony favors no assortative mating by size and serial-type polygyny in common chameleons, Chamaeleo chamaeleon. Herpetologica 55, 523–530 (1999).

    Google Scholar 

  • Cuadrado, M. Influence of female’s sexual stage and number of available males on the intensity of guarding behavior by male common chameleons: A test of different predictions. Herpetologica 56, 387–393 (2000).

    Google Scholar 

  • Cuadrado, M. Mate guarding and social mating system in male common chameleons (Chamaeleo chamaeleon). J. Zool. 255, 425–435 (2001).

    Article 

    Google Scholar 

  • Kauffmann, J. L. D., Brady, L. D. & Jenkins, R. K. B. Behavioural observations of the chameleon Calumma oshaughnessyi oshaughnessyi in Madagascar. Herpetol. J. 7, 77–80 (1997).

    Google Scholar 

  • Greenwood, P. J. Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 28, 1140–1162 (1980).

    Article 

    Google Scholar 

  • Kappeler, P. M. Intrasexual selection in Mirza coquereli: Evidence for scramble competition polygyny in a solitary primate. Behav. Ecol. Sociobiol. 41, 115–127 (1997).

    Article 

    Google Scholar 

  • Croft, D. P. et al. Sex-biased movement in the guppy (Poecilia reticulata). Oecologia 137, 62–68 (2003).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Glaudas, X. & Rodriguez-Robles, J. A. Vagabond males and sedentary females: Spatial ecology and mating system of the speckled rattlesnake (Crotalus mitchellii). Biol. J. Linn. Soc. 103, 681–695 (2011).

    Article 

    Google Scholar 

  • Taborsky, M. & Brockmann, H. J. Alternative reproductive tactics and life history phenotypes. In Animal Behaviour: Evolution and Mechanisms (ed. Kappeler, P. M.) 537–586 (Springer, 2010).

    Chapter 

    Google Scholar 

  • Tolley, K. A., Chauke, L. F., Jackson, J. C. & Feldheim, K. A. Multiple paternity and sperm storage in the Cape dwarf chameleon (Bradypodion pumilum). Afr. J. Herpetol. 63, 47–56 (2014).

    Article 

    Google Scholar 

  • Rebelo, A. D., Altwegg, R., Katz, E. M. & Tolley, K. A. Out on a limb: Female chameleons (Bradypodion pumilum) position themselves to minimise detection, whereas males maximise mating opportunity. Afr. J. Herpetol https://doi.org/10.1080/21564574.2021.1998233 (2022).

    Article 

    Google Scholar 

  • Dollion, A. Y., Herrel, A., Marquis, O., Leroux-Coyau, M. & Meylan, S. The colour of success: Does female mate choice rely on male colour change in the chameleon Furcifer pardalis?. J. Exp. Biol. 223, jeb224550 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Dollion, A. Y., Meylan, S., Marquis, O., Leroux-Coyau, M. & Herrel, A. Do male panther chameleons use different aspects of color change to settle disputes?. Sci. Nat. 109, 13 (2022).

    CAS 
    Article 

    Google Scholar 

  • Shine, R. Reproductive strategies in snakes. Proc. R. Soc. Lond. B 270, 995–1004 (2003).

    Article 

    Google Scholar 

  • Andrews, R. M. & Karsten, K. B. Evolutionary innovations of squamate reproductive and developmental biology in the family Chamaeleonidae. Biol. J. Linn. Soc. 100, 656–668 (2010).

    Article 

    Google Scholar 

  • Sever, D. M. & Hamlett, W. C. Female sperm storage in reptiles. J. Exp. Zool. 292, 187–199 (2002).

    PubMed 
    Article 

    Google Scholar 

  • Friesen, C. R., Kahrl, A. F. & Olsson, M. Sperm competition in squamate reptiles. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20200079 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Parker, G. A. & Birkhead, T. R. Polyandry: The history of a revolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120335 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Székely, T., Weissing, F. J. & Komdeur, J. Adult sex ratio variation: Implications for breeding system evolution. J. Evol. Biol. 27, 1500–1512 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Kokko, H. & Jennions, M. D. Parental investment, sexual selection and sex ratios. J. Evol. Biol. 21, 919–948 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Holleley, C. E., Dickman, C. R., Crowther, M. S. & Oldroyd, B. P. Size breeds success: Multiple paternity, multivariate selection and male semelparity in a small marsupial, Antechinus stuartii. Mol. Ecol. 15, 3439–3448 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kappeler, P. M. & Fichtel, C. A 15-year perspective on the social organization and life history of sifaka in Kirindy forest. In Long-Term Field Studies of Primates (eds Kappeler, P. M. & Watts, D. P.) 101–121 (Springer, 2012).

    Chapter 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ (2020).

  • RStudio Team. RStudio: Integrated development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/ (2020).

  • Wickham, H. The split-apply-combine strategy for data analysis. J. Stat. Softw. 40, 1–29 (2011).

    Google Scholar 

  • Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A grammar of data manipulation. R package version 102. https://cran.r-project.org/package=dplyr (2020).

  • Grolemund, G. & Wickham, H. Dates and times made easy with lubridate. J. Stat. Softw. 40, 1–25 (2011).

    Article 

    Google Scholar 

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

    MATH 
    Book 

    Google Scholar 

  • Wilke, C. O. cowplot: Streamlined plot theme and plot annotations for ggplot2. R package version 100. https://cran.r-project.org/package=cowplot (2019).

  • Revelle, W. psych: Procedures for personality and psychological research, Northwestern University, Evanston, IL. https://cran.r-project.org/package=psych (2020).

  • Wickham, H. modelr: Modelling functions that work with the pipe. R package version 018. https://cran.r-project.org/package=modelr (2020).

  • Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage, 2019).

    Google Scholar 

  • Ara, T. brunnermunzel: (Permuted) Brunner–Munzel Test R Package Version 133 (2019).

  • Crane, M., Silva, I., Marshall, B. M. & Strine, C. T. Lots of movement, little progress: A review of reptile home range literature. PeerJ 9, e11742 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Signer, J. & Fieberg, J. A fresh look at an old concept: Home-range estimation in a tidy world. PeerJ 9, e11031 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Laver, P. N. & Kelly, M. J. A critical review of home range studies. J. Wildl. Manag. 72, 290–298 (2008).

    Article 

    Google Scholar 

  • Signer, J., Fieberg, J. & Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • QGIS Development Team. QGIS Geographic Information System Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2020).

  • Getz, W. M. & Wilmers, C. C. A local nearest-neighbor convex-hull construction of home ranges and utilization distributions. Ecography 27, 489–505 (2004).

    Article 

    Google Scholar 

  • Worton, B. J. Kernel methods for estimating the utilization distribution in homerange studies. Ecology 70, 1641–1668 (1989).

    Article 

    Google Scholar 

  • Yagi, K. T. & Green, D. M. Performance and movement in relation to postmetamorphic body size in a pond-breeding amphibian. J. Herpetol. 51, 482–489 (2017).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Evan Leppink: Seeking a way to better stabilize the fusion environment

    Characterization of triatomine bloodmeal sources using direct Sanger sequencing and amplicon deep sequencing methods