Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 103, 247–260 (2003).
Google Scholar
Bauer, S., Lisovski, S. & Hahn, S. Timing is crucial for consequences of migratory connectivity. Oikos 125, 605–612 (2016).
Google Scholar
Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).
Google Scholar
Fricke, E. C., Ordonez, A., Rogers, H. S. & Svenning, J. C. The effects of defaunation on plants’ capacity to track climate change. Science 214, 210–214 (2022).
Google Scholar
Tucker, M. A. et al. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).
Google Scholar
Wilcove, D. S. & Wikelski, M. Going, going, gone: is animal migration disappearing? PLoS Biol. 6, e188 (2008).
Google Scholar
Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change. Nature 421, 37–42 (2003).
Google Scholar
Walther, G. et al. Ecological responses to recent climate change. Nature 4126, 389–395 (2002).
Google Scholar
Teitelbaum, C. S. et al. Experience drives innovation of new migration patterns of whooping cranes in response to global change. Nat. Commun. 7, 12793 (2016).
Google Scholar
Oestreich, W. K., Chapman, M. S. & Crowder, L. B. A comparative analysis of dynamic management in marine and terrestrial systems. Front. Ecol. Environ. 18, 496–504 (2020).
Google Scholar
Senzaki, M. et al. Sensory pollutants alter bird phenology and fitness across a continent. Nature 587, 605–609 (2020).
Google Scholar
Guerra, A. S. Wolves of the sea: managing human–wildlife conflict in an increasingly tense ocean. Mar. Policy 99, 369–373 (2019).
Google Scholar
Abrahms, B. Human–wildlife conflict under climate change. Science 373, 484–485 (2021).
Google Scholar
Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).
Google Scholar
Post, E. & Forchhammer, M. C. Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Phil. Trans. R. Soc. B Biol. Sci. 363, 2369–2375 (2008).
Google Scholar
Winkler, D. W. et al. Cues, strategies, and outcomes: how migrating vertebrates track environmental change. Mov. Ecol. 2, 10 (2014).
Google Scholar
Xu, W. et al. The plasticity of ungulate migration in a changing world. Ecology 102, e03293 (2021).
Google Scholar
McNamara, J. M., Barta, Z., Klaassen, M. & Bauer, S. Cues and the optimal timing of activities under environmental change. Ecol. Lett. 14, 1183–1190 (2011).
Google Scholar
Bauer, S., McNamara, J. M. & Barta, Z. Environmental variability, reliability of information and the timing of migration. Proc. R. Soc. B Biol. Sci. 287, 20200622 (2020).
Google Scholar
Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36, 308–320 (2020).
Google Scholar
Visser, M. E., Holleman, L. J. M. & Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147, 164–172 (2006).
Google Scholar
Aikens, E. O. et al. Wave-like patterns of plant phenology determine ungulate movement tactics. Curr. Biol. 30, 3444–3449 (2020).
Google Scholar
Abrahms, B. et al. Memory and resource tracking drive blue whale migrations. Proc. Natl Acad. Sci. USA 116, 5582–5587 (2019).
Google Scholar
Lank, D. B., Butler, R. W., Ireland, J. & Ydenberg, R. C. Effects of predation danger on migration strategies of sandpipers. Oikos 103, 303–319 (2003).
Google Scholar
Sabal, M. C. et al. Predation landscapes influence migratory prey ecology and evolution. Trends Ecol. Evol. 36, 737–749 (2021).
Google Scholar
Furey, N. B., Armstrong, J. B., Beauchamp, D. A. & Hinch, S. G. Migratory coupling between predators and prey. Nat. Ecol. Evol. 2, 1846–1853 (2018).
Google Scholar
Altizer, S., Bartel, R. & Han, B. A. Animal migration and infectious disease risk. Science 331, 296–302 (2011).
Google Scholar
Gunnarsson, T., Gill, J., Sigurbjörnsson, T. & Sutherland, W. Arrival synchrony in migratory birds. Nature 431, 646 (2004).
Google Scholar
Beltran, R. S. et al. Elephant seals time their long-distance migration using a map sense. Curr. Biol. 32, R156–R157 (2022).
Google Scholar
Yang, L. H. & Rudolf, V. H. W. Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecol. Lett. 13, 1–10 (2010).
Google Scholar
Visser, M. E. & Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 3, 879–885 (2019).
Google Scholar
Furey, N. B. et al. Predator swamping reduces predation risk during nocturnal migration of juvenile salmon in a high-mortality landscape. J. Anim. Ecol. 85, 948–959 (2016).
Google Scholar
Rickbeil, G. J. M. et al. Plasticity in elk migration timing is a response to changing environmental conditions. Glob. Change Biol. 25, 2368–2381 (2019).
Google Scholar
Schmaljohann, H. & Both, C. The limits of modifying migration speed to adjust to climate change. Nat. Clim. Change 7, 573–576 (2017).
Google Scholar
Gwinner, E. Circadian and circannual programmes in avian migration. J. Exp. Biol. 199, 39–48 (1996).
Google Scholar
Liedvogel, M., Åkesson, S. & Bensch, S. The genetics of migration on the move. Trends Ecol. Evol. 26, 561–569 (2011).
Google Scholar
Hauser, D. D. W. et al. Decadal shifts in autumn migration timing by Pacific Arctic beluga whales are related to delayed annual sea ice formation. Glob. Change Biol. 23, 2206–2217 (2017).
Google Scholar
Palacín, C., Alonso, J. C., Alonso, J. A., Magaña, M. & Martín, C. A. Cultural transmission and flexibility of partial migration patterns in a long-lived bird, the great bustard Otis tarda. J. Avian Biol. 42, 301–308 (2011).
Google Scholar
Couzin, I. D. Collective animal migration. Curr. Biol. 28, R976–R980 (2018).
Google Scholar
Guttal, V. & Couzin, I. D. Social interactions, information use, and the evolution of collective migration. Proc. Natl Acad. Sci. USA 107, 16172–16177 (2010).
Google Scholar
Berdahl, A. M. et al. Collective animal navigation and migratory culture: from theoretical models to empirical evidence. Phil. Trans. R. Soc. B Biol. Sci. 373, 20170009 (2018).
Google Scholar
Cohen, E. B. & Satterfield, D. A. ‘Chancing on a spectacle:’ co-occurring animal migrations and interspecific interactions. Ecography 43, 1657–1671 (2020).
Google Scholar
Berdahl, A., Torney, C. J., Ioannou, C. C., Faria, J. J. & Couzin, I. D. Emergent sensing of complex environments by mobile animal groups. Science 339, 574–576 (2013).
Google Scholar
Abrahms, B., Teitelbaum, C. S., Mueller, T. & Converse, S. J. Ontogenetic shifts from social to experiential learning drive avian migration timing. Nat. Commun. 12, 7326 (2021).
Google Scholar
Sasaki, T. & Biro, D. Cumulative culture can emerge from collective intelligence in animal groups. Nat. Commun. 8, 15049 (2017).
Google Scholar
Helm, B., Piersma, T. & van der Jeugd, H. Sociable schedules: interplay between avian seasonal and social behaviour. Anim. Behav. 72, 245–262 (2006).
Google Scholar
Piersma, T., Zwarts, L. & Bruggemann, J. H. Behavioural aspects of the departure of waders before long-distance flights: flocking, vocalizations, flight paths and diurnal timing. Ardea 78, 157–184 (1990).
Dingle, H. & Drake, V. A. What is migration? BioScience 57, 113–121 (2007).
Google Scholar
Oestreich, W. K. & Aiu, K. M. Code and data from: The influence of social cues on timing of animal migrations. Zenodo https://zenodo.org/record/6574762 (2022).
Furey, N. B., Martins, E. G. & Hinch, S. G. Migratory salmon smolts exhibit consistent interannual depensatory predator swamping: effects on telemetry-based survival estimates. Ecol. Freshw. Fish 30, 18–30 (2021).
Google Scholar
Berdahl, A., Westley, P. A. H. & Quinn, T. P. Social interactions shape the timing of spawning migrations in an anadromous fish. Anim. Behav. 126, 221–229 (2017).
Google Scholar
Louca, V., Lindsay, S. W. & Lucas, M. C. Factors triggering floodplain fish emigration: importance of fish density and food availability. Ecol. Freshw. Fish 18, 60–64 (2009).
Google Scholar
Bastille-Rousseau, G. et al. Migration triggers in a large herbivore: Galápagos giant tortoises navigating resource gradients on volcanoes. Ecology 100, e02658 (2019).
Google Scholar
Bracis, C. & Mueller, T. Memory, not just perception, plays an important role in terrestrial mammalian migration. Proc. R. Soc. B Biol. Sci. 284, 20170449 (2017).
Google Scholar
Barrett, B., Zepeda, E., Pollack, L., Munson, A. & Sih, A. Counter-culture: does social learning help or hinder adaptive response to human-induced rapid environmental change? Front. Ecol. Evol. 7, 183 (2019).
Google Scholar
Merkle, J. A. et al. Site fidelity as a maladaptive behavior in the Anthropocene. Front. Ecol. Environ. 20, 187–194 (2022).
Google Scholar
Teske, P. R. et al. The sardine run in southeastern Africa is a mass migration into an ecological trap. Sci. Adv. 7, eabf4514 (2021).
Google Scholar
Corten, A. The role of ‘conservatism’ in herring migrations. Rev. Fish Biol. Fish. 11, 339–361 (2002).
Google Scholar
Mukhin, A., Chernetsov, N. & Kishkinev, D. Acoustic information as a distant cue for habitat recognition by nocturnally migrating passerines during landfall. Behav. Ecol. 19, 716–723 (2008).
Google Scholar
Barker, K. J. et al. Toward a new framework for restoring lost wildlife migrations. Conserv. Lett. 15, e12850 (2022).
Google Scholar
Teitelbaum, C. S., Converse, S. J. & Mueller, T. The importance of early life experience and animal cultures in reintroductions. Conserv. Lett. 12, e12599 (2019).
Google Scholar
Hughey, L. F., Hein, A. M., Strandburg-Peshkin, A., Jensen, F. H. & Hughey, L. F. Challenges and solutions for studying collective animal behaviour in the wild. Phil. Trans. R. Soc. B 373, 20170005 (2018).
Google Scholar
Calabrese, J. M. et al. Disentangling social interactions and environmental drivers in multi-individual wildlife tracking data. Phil. Trans. R. Soc. B 373, 20170007 (2018).
Google Scholar
Jesmer, B. R. et al. Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. Science 361, 1023–1025 (2018).
Google Scholar
Bousquet, C. A. H., Sumpter, D. J. T. & Manser, M. B. Moving calls: a vocal mechanism underlying quorum decisions in cohesive groups. Proc. R. Soc. B Biol. Sci. 278, 1482–1488 (2011).
Google Scholar
Dibnah, A. J. et al. Vocally mediated consensus decisions govern mass departures from jackdaw roosts. Curr. Biol. 32, R455–R456 (2022).
Google Scholar
Robart, A. R., Zuñiga, H. X., Navarro, G. & Watts, H. E. Social environment influences termination of nomadic migration. Biol. Lett. 18, 20220006 (2022).
Google Scholar
Dodson, S., Abrahms, B., Bograd, S. J., Fiechter, J. & Hazen, E. L. Disentangling the biotic and abiotic drivers of emergent migratory behavior using individual-based models. Ecol. Modell. 432, 109225 (2020).
Google Scholar
Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).
Google Scholar
Hussey, N. E. et al. Aquatic animal telemetry: a panoramic window into the underwater world. Science 348, 1255642 (2015).
Google Scholar
Oestreich, W. K. et al. Acoustic signature reveals blue whale tune life history transitions to oceanographic conditions. Funct. Ecol. 36, 882–895 (2022).
Google Scholar
Chapman, J. W., Reynolds, D. R. & Smith, A. D. Vertical-looking radar: a new tool for monitoring high-altitude insect migration. BioScience 53, 503–511 (2003).
Google Scholar
Oestreich, W. K. et al. Animal-borne metrics enable acoustic detection of blue whale migration. Curr. Biol. 30, 4773–4779 (2020).
Google Scholar
Fraser, K. C., Shave, A., de Greef, E., Siegrist, J. & Garroway, C. J. Individual variability in migration timing can explain long-term, population-level advances in a songbird. Front. Ecol. Evol. 7, 324 (2019).
Google Scholar
Byholm, P., Beal, M., Isaksson, N., Lötberg, U. & Åkesson, S. Paternal transmission of migration knowledge in a long-distance bird migrant. Nat. Commun. 13, 1566 (2022).
Google Scholar
Schneider, S. S. & McNally, L. C. Waggle dance behavior associated with seasonal absconding in colonies of the African honey bee, Apis mellifera scutellata. Insectes Soc. 41, 115–127 (1994).
Google Scholar
Raveling, D. G. Preflight and flight behavior of Canada geese. Auk 86, 671–681 (1969).
Google Scholar
Tennessen, J. B., Parks, S. E. & Langkilde, T. Traffic noise causes physiological stress and impairs breeding migration behaviour in frogs. Conserv. Physiol. 2, cou032 (2014).
Google Scholar
Lagarde, A., Lagarde, F. & Piersma, T. Vocal signalling by Eurasian spoonbills Platalea leucorodia in flocks before migratory departure. Ardea 109, 243–250 (2021).
Google Scholar
Rees, E. C. Conflict of choice within pairs of Bewick’s swans regarding their migratory movement to and from the wintering grounds. Anim. Behav. 35, 1685–1693 (1987).
Google Scholar
Mazeroll, A. I. & Montgomery, W. L. Daily migrations of a coral reef fish in the Red Sea (Gulf of Aqaba, Israel). Copiea 1998, 893–905 (1998).
Google Scholar
Méndez, V. et al. Paternal effects in the initiation of migratory behaviour in birds. Sci. Rep. 11, 2782 (2021).
Google Scholar
Nelson, M. E. Development of migratory behavior in northern white-tailed deer. Can. J. Zool. 76, 426–432 (1998).
Google Scholar
Sweanor, P. Y. & Sandgren, F. Winter-range philopatry of seasonally migratory moose. J. Appl. Ecol. 26, 25–33 (1989).
Google Scholar
Rees, E. C. Consistency in the timing of migration for individual Bewick’s swans. Anim. Behav. 38, 384–393 (1989).
Google Scholar
Corten, A. A possible adaptation of herring feeding migrations to a change in timing of the Calanus finmarchicus season in the eastern North Sea. ICES J. Mar. Sci. 57, 1261–1270 (2000).
Google Scholar
Loonstra, A. J. et al. Individual black-tailed godwits do not stick to single routes: a hypothesis on how low population densities might decrease social conformity. Ardea 107, 251–261 (2020).
Google Scholar
Hake, M., Kjellén, N. & Alerstam, T. Age‐dependent migration strategy in honey buzzards Pernis apivorus tracked by satellite. Oikos 103, 385–396 (2003).
Google Scholar
Gupte, P. R., Koffijberg, K., Müskens, G. J. D. M., Wikelski, M. & Kölzsch, A. Family size dynamics in wintering geese. J. Ornithol. 160, 363–375 (2019).
Google Scholar
Gonçalves, M. I. C. et al. Movement patterns of humpback whales (Megaptera novaeangliae) reoccupying a Brazilian breeding ground. Biota Neotrop. 18, e20180567 (2018).
Google Scholar
Trudelle, L. et al. First insights on spatial and temporal distribution patterns of humpback whales in the breeding ground at Sainte Marie Channel, Madagascar. Afr. J. Mar. Sci. 40, 75–86 (2018).
Google Scholar
De La Gala-Hernández, S. R., Heckel, G. & Sumich, J. L. Comparative swimming effort of migrating gray whales (Eschrichtius robustus) and calf cost of transport along Costa Azul, Baja California, Mexico. Can. J. Zool. 86, 307–313 (2008).
Google Scholar
Sword, G. A. Local population density and the activation of movement in migratory band-forming Mormon crickets. Anim. Behav. 69, 437–444 (2005).
Google Scholar
Buhl, J. et al. From disorder to order in marching locusts. Science 312, 1402–1406 (2006).
Google Scholar
Mysterud, A., Loe, L. E., Zimmermann, B., Bischof, R. & Meisingset, E. Partial migration in expanding red deer populations at northern latitudes—a role for density dependence? Oikos 120, 1817–1825 (2011).
Google Scholar
Bukreeva, O. M. & Lidzhi-garyaeva, G. V. Mass migration of social voles (Microtus socialis Pallas, 1773) in the Northwestern Caspian region. Arid Ecosyst. 8, 147–151 (2018).
Google Scholar
Eggeman, S. L., Hebblewhite, M., Bohm, H., Whittington, J. & Merrill, E. H. Behavioural flexibility in migratory behaviour in a long-lived large herbivore. J. Anim. Ecol. 85, 785–797 (2016).
Google Scholar
Weithman, C. et al. Senescence and carryover effects of reproductive performance influence migration, condition, and breeding propensity in a small shorebird. Ecol. Evol. 7, 11044–11056 (2017).
Google Scholar
Rappole, J. H. & Warner, D. W. Relationships between behavior, physiology and weather in avian transients at a migration stopover site. Oecologia 212, 193–212 (1976).
Google Scholar
Fauchald, P., Mauritzen, M. & Gjøsæter, H. Density‐dependent migratory waves in the marine pelagic ecosystem. Ecology 87, 2915–2924 (2006).
Google Scholar
Makris, N. C. et al. Critical population density triggers rapid formation of vast oceanic fish shoals. Science 323, 1734–1737 (2009).
Google Scholar
Tøttrup, A. P. & Thorup, K. Sex-differentiated migration patterns, protandry and phenology in North European songbird populations. J. Ornithol. 149, 161–167 (2008).
Google Scholar
Francis, C. M. & Cooke, C. F. Differential timing of spring migration in rose-breasted grosbeaks. J. Field Ornithol. 61, 404–412 (1990).
Corgos, A., Verísimo, P. & Freire, J. Timing and seasonality of the terminal molt and mating migration in the spider crab, Maja brachydactyla: evidence of alternative mating strategies. J. Shellfish Res. 25, 577–587 (2006).
Google Scholar
Gordo, O., Sanz, J. J. & Lobo, J. M. Spatial patterns of white stork (Ciconia ciconia) migratory phenology in the Iberian Peninsula. J. Ornithol. 148, 293–308 (2007).
Google Scholar
Sergio, F. et al. Individual improvements and selective mortality shape lifelong migratory performance. Nature 515, 410–413 (2014).
Google Scholar
Manica, L. T., Graves, J. A., Podos, J. & Macedo, R. H. Hidden leks in a migratory songbird: mating advantages for earlier and more attractive males. Behav. Ecol. 31, 1180–1191 (2020).
Google Scholar
Cade, D. E. et al. Social exploitation of extensive, ephemeral, environmentally controlled prey patches by supergroups of rorqual whales. Anim. Behav. 182, 251–266 (2021).
Google Scholar
Urbanek, R. P., Fondow, L. E. A., Zimorski, S. E., Wellington, M. A. & Nipper, M. A. Winter release and management of reintroduced migratory whooping cranes Grus americana. Bird Conserv. Int. 20, 43–54 (2010).
Google Scholar
Németh, Z. & Moore, F. R. Information acquisition during migration: a social perspective. Auk 131, 186–194 (2014).
Google Scholar
Source: Ecology - nature.com