in

The influence of social cues on timing of animal migrations

  • Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 103, 247–260 (2003).

    Article 

    Google Scholar 

  • Bauer, S., Lisovski, S. & Hahn, S. Timing is crucial for consequences of migratory connectivity. Oikos 125, 605–612 (2016).

    Article 

    Google Scholar 

  • Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fricke, E. C., Ordonez, A., Rogers, H. S. & Svenning, J. C. The effects of defaunation on plants’ capacity to track climate change. Science 214, 210–214 (2022).

    Article 

    Google Scholar 

  • Tucker, M. A. et al. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wilcove, D. S. & Wikelski, M. Going, going, gone: is animal migration disappearing? PLoS Biol. 6, e188 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change. Nature 421, 37–42 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Walther, G. et al. Ecological responses to recent climate change. Nature 4126, 389–395 (2002).

    Article 

    Google Scholar 

  • Teitelbaum, C. S. et al. Experience drives innovation of new migration patterns of whooping cranes in response to global change. Nat. Commun. 7, 12793 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oestreich, W. K., Chapman, M. S. & Crowder, L. B. A comparative analysis of dynamic management in marine and terrestrial systems. Front. Ecol. Environ. 18, 496–504 (2020).

    Article 

    Google Scholar 

  • Senzaki, M. et al. Sensory pollutants alter bird phenology and fitness across a continent. Nature 587, 605–609 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guerra, A. S. Wolves of the sea: managing human–wildlife conflict in an increasingly tense ocean. Mar. Policy 99, 369–373 (2019).

    Article 

    Google Scholar 

  • Abrahms, B. Human–wildlife conflict under climate change. Science 373, 484–485 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Post, E. & Forchhammer, M. C. Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Phil. Trans. R. Soc. B Biol. Sci. 363, 2369–2375 (2008).

    Article 

    Google Scholar 

  • Winkler, D. W. et al. Cues, strategies, and outcomes: how migrating vertebrates track environmental change. Mov. Ecol. 2, 10 (2014).

    Article 

    Google Scholar 

  • Xu, W. et al. The plasticity of ungulate migration in a changing world. Ecology 102, e03293 (2021).

    Article 
    PubMed 

    Google Scholar 

  • McNamara, J. M., Barta, Z., Klaassen, M. & Bauer, S. Cues and the optimal timing of activities under environmental change. Ecol. Lett. 14, 1183–1190 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bauer, S., McNamara, J. M. & Barta, Z. Environmental variability, reliability of information and the timing of migration. Proc. R. Soc. B Biol. Sci. 287, 20200622 (2020).

    Article 

    Google Scholar 

  • Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36, 308–320 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Visser, M. E., Holleman, L. J. M. & Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147, 164–172 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Aikens, E. O. et al. Wave-like patterns of plant phenology determine ungulate movement tactics. Curr. Biol. 30, 3444–3449 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abrahms, B. et al. Memory and resource tracking drive blue whale migrations. Proc. Natl Acad. Sci. USA 116, 5582–5587 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lank, D. B., Butler, R. W., Ireland, J. & Ydenberg, R. C. Effects of predation danger on migration strategies of sandpipers. Oikos 103, 303–319 (2003).

    Article 

    Google Scholar 

  • Sabal, M. C. et al. Predation landscapes influence migratory prey ecology and evolution. Trends Ecol. Evol. 36, 737–749 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Furey, N. B., Armstrong, J. B., Beauchamp, D. A. & Hinch, S. G. Migratory coupling between predators and prey. Nat. Ecol. Evol. 2, 1846–1853 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Altizer, S., Bartel, R. & Han, B. A. Animal migration and infectious disease risk. Science 331, 296–302 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gunnarsson, T., Gill, J., Sigurbjörnsson, T. & Sutherland, W. Arrival synchrony in migratory birds. Nature 431, 646 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Beltran, R. S. et al. Elephant seals time their long-distance migration using a map sense. Curr. Biol. 32, R156–R157 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, L. H. & Rudolf, V. H. W. Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecol. Lett. 13, 1–10 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Visser, M. E. & Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 3, 879–885 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Furey, N. B. et al. Predator swamping reduces predation risk during nocturnal migration of juvenile salmon in a high-mortality landscape. J. Anim. Ecol. 85, 948–959 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Rickbeil, G. J. M. et al. Plasticity in elk migration timing is a response to changing environmental conditions. Glob. Change Biol. 25, 2368–2381 (2019).

    Article 

    Google Scholar 

  • Schmaljohann, H. & Both, C. The limits of modifying migration speed to adjust to climate change. Nat. Clim. Change 7, 573–576 (2017).

    Article 

    Google Scholar 

  • Gwinner, E. Circadian and circannual programmes in avian migration. J. Exp. Biol. 199, 39–48 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liedvogel, M., Åkesson, S. & Bensch, S. The genetics of migration on the move. Trends Ecol. Evol. 26, 561–569 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Hauser, D. D. W. et al. Decadal shifts in autumn migration timing by Pacific Arctic beluga whales are related to delayed annual sea ice formation. Glob. Change Biol. 23, 2206–2217 (2017).

    Article 

    Google Scholar 

  • Palacín, C., Alonso, J. C., Alonso, J. A., Magaña, M. & Martín, C. A. Cultural transmission and flexibility of partial migration patterns in a long-lived bird, the great bustard Otis tarda. J. Avian Biol. 42, 301–308 (2011).

    Article 

    Google Scholar 

  • Couzin, I. D. Collective animal migration. Curr. Biol. 28, R976–R980 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guttal, V. & Couzin, I. D. Social interactions, information use, and the evolution of collective migration. Proc. Natl Acad. Sci. USA 107, 16172–16177 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berdahl, A. M. et al. Collective animal navigation and migratory culture: from theoretical models to empirical evidence. Phil. Trans. R. Soc. B Biol. Sci. 373, 20170009 (2018).

    Article 

    Google Scholar 

  • Cohen, E. B. & Satterfield, D. A. ‘Chancing on a spectacle:’ co-occurring animal migrations and interspecific interactions. Ecography 43, 1657–1671 (2020).

    Article 

    Google Scholar 

  • Berdahl, A., Torney, C. J., Ioannou, C. C., Faria, J. J. & Couzin, I. D. Emergent sensing of complex environments by mobile animal groups. Science 339, 574–576 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abrahms, B., Teitelbaum, C. S., Mueller, T. & Converse, S. J. Ontogenetic shifts from social to experiential learning drive avian migration timing. Nat. Commun. 12, 7326 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sasaki, T. & Biro, D. Cumulative culture can emerge from collective intelligence in animal groups. Nat. Commun. 8, 15049 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Helm, B., Piersma, T. & van der Jeugd, H. Sociable schedules: interplay between avian seasonal and social behaviour. Anim. Behav. 72, 245–262 (2006).

    Article 

    Google Scholar 

  • Piersma, T., Zwarts, L. & Bruggemann, J. H. Behavioural aspects of the departure of waders before long-distance flights: flocking, vocalizations, flight paths and diurnal timing. Ardea 78, 157–184 (1990).

    Google Scholar 

  • Dingle, H. & Drake, V. A. What is migration? BioScience 57, 113–121 (2007).

    Article 

    Google Scholar 

  • Oestreich, W. K. & Aiu, K. M. Code and data from: The influence of social cues on timing of animal migrations. Zenodo https://zenodo.org/record/6574762 (2022).

  • Furey, N. B., Martins, E. G. & Hinch, S. G. Migratory salmon smolts exhibit consistent interannual depensatory predator swamping: effects on telemetry-based survival estimates. Ecol. Freshw. Fish 30, 18–30 (2021).

    Article 

    Google Scholar 

  • Berdahl, A., Westley, P. A. H. & Quinn, T. P. Social interactions shape the timing of spawning migrations in an anadromous fish. Anim. Behav. 126, 221–229 (2017).

    Article 

    Google Scholar 

  • Louca, V., Lindsay, S. W. & Lucas, M. C. Factors triggering floodplain fish emigration: importance of fish density and food availability. Ecol. Freshw. Fish 18, 60–64 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bastille-Rousseau, G. et al. Migration triggers in a large herbivore: Galápagos giant tortoises navigating resource gradients on volcanoes. Ecology 100, e02658 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Bracis, C. & Mueller, T. Memory, not just perception, plays an important role in terrestrial mammalian migration. Proc. R. Soc. B Biol. Sci. 284, 20170449 (2017).

    Article 

    Google Scholar 

  • Barrett, B., Zepeda, E., Pollack, L., Munson, A. & Sih, A. Counter-culture: does social learning help or hinder adaptive response to human-induced rapid environmental change? Front. Ecol. Evol. 7, 183 (2019).

    Article 

    Google Scholar 

  • Merkle, J. A. et al. Site fidelity as a maladaptive behavior in the Anthropocene. Front. Ecol. Environ. 20, 187–194 (2022).

    Article 

    Google Scholar 

  • Teske, P. R. et al. The sardine run in southeastern Africa is a mass migration into an ecological trap. Sci. Adv. 7, eabf4514 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Corten, A. The role of ‘conservatism’ in herring migrations. Rev. Fish Biol. Fish. 11, 339–361 (2002).

    Article 

    Google Scholar 

  • Mukhin, A., Chernetsov, N. & Kishkinev, D. Acoustic information as a distant cue for habitat recognition by nocturnally migrating passerines during landfall. Behav. Ecol. 19, 716–723 (2008).

    Article 

    Google Scholar 

  • Barker, K. J. et al. Toward a new framework for restoring lost wildlife migrations. Conserv. Lett. 15, e12850 (2022).

    Article 

    Google Scholar 

  • Teitelbaum, C. S., Converse, S. J. & Mueller, T. The importance of early life experience and animal cultures in reintroductions. Conserv. Lett. 12, e12599 (2019).

    Article 

    Google Scholar 

  • Hughey, L. F., Hein, A. M., Strandburg-Peshkin, A., Jensen, F. H. & Hughey, L. F. Challenges and solutions for studying collective animal behaviour in the wild. Phil. Trans. R. Soc. B 373, 20170005 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Calabrese, J. M. et al. Disentangling social interactions and environmental drivers in multi-individual wildlife tracking data. Phil. Trans. R. Soc. B 373, 20170007 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jesmer, B. R. et al. Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. Science 361, 1023–1025 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bousquet, C. A. H., Sumpter, D. J. T. & Manser, M. B. Moving calls: a vocal mechanism underlying quorum decisions in cohesive groups. Proc. R. Soc. B Biol. Sci. 278, 1482–1488 (2011).

    Article 

    Google Scholar 

  • Dibnah, A. J. et al. Vocally mediated consensus decisions govern mass departures from jackdaw roosts. Curr. Biol. 32, R455–R456 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Robart, A. R., Zuñiga, H. X., Navarro, G. & Watts, H. E. Social environment influences termination of nomadic migration. Biol. Lett. 18, 20220006 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Dodson, S., Abrahms, B., Bograd, S. J., Fiechter, J. & Hazen, E. L. Disentangling the biotic and abiotic drivers of emergent migratory behavior using individual-based models. Ecol. Modell. 432, 109225 (2020).

    Article 

    Google Scholar 

  • Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Hussey, N. E. et al. Aquatic animal telemetry: a panoramic window into the underwater world. Science 348, 1255642 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Oestreich, W. K. et al. Acoustic signature reveals blue whale tune life history transitions to oceanographic conditions. Funct. Ecol. 36, 882–895 (2022).

    Article 
    CAS 

    Google Scholar 

  • Chapman, J. W., Reynolds, D. R. & Smith, A. D. Vertical-looking radar: a new tool for monitoring high-altitude insect migration. BioScience 53, 503–511 (2003).

    Article 

    Google Scholar 

  • Oestreich, W. K. et al. Animal-borne metrics enable acoustic detection of blue whale migration. Curr. Biol. 30, 4773–4779 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fraser, K. C., Shave, A., de Greef, E., Siegrist, J. & Garroway, C. J. Individual variability in migration timing can explain long-term, population-level advances in a songbird. Front. Ecol. Evol. 7, 324 (2019).

    Article 

    Google Scholar 

  • Byholm, P., Beal, M., Isaksson, N., Lötberg, U. & Åkesson, S. Paternal transmission of migration knowledge in a long-distance bird migrant. Nat. Commun. 13, 1566 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schneider, S. S. & McNally, L. C. Waggle dance behavior associated with seasonal absconding in colonies of the African honey bee, Apis mellifera scutellata. Insectes Soc. 41, 115–127 (1994).

    Article 

    Google Scholar 

  • Raveling, D. G. Preflight and flight behavior of Canada geese. Auk 86, 671–681 (1969).

    Article 

    Google Scholar 

  • Tennessen, J. B., Parks, S. E. & Langkilde, T. Traffic noise causes physiological stress and impairs breeding migration behaviour in frogs. Conserv. Physiol. 2, cou032 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lagarde, A., Lagarde, F. & Piersma, T. Vocal signalling by Eurasian spoonbills Platalea leucorodia in flocks before migratory departure. Ardea 109, 243–250 (2021).

    Article 

    Google Scholar 

  • Rees, E. C. Conflict of choice within pairs of Bewick’s swans regarding their migratory movement to and from the wintering grounds. Anim. Behav. 35, 1685–1693 (1987).

    Article 

    Google Scholar 

  • Mazeroll, A. I. & Montgomery, W. L. Daily migrations of a coral reef fish in the Red Sea (Gulf of Aqaba, Israel). Copiea 1998, 893–905 (1998).

    Article 

    Google Scholar 

  • Méndez, V. et al. Paternal effects in the initiation of migratory behaviour in birds. Sci. Rep. 11, 2782 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nelson, M. E. Development of migratory behavior in northern white-tailed deer. Can. J. Zool. 76, 426–432 (1998).

    Article 

    Google Scholar 

  • Sweanor, P. Y. & Sandgren, F. Winter-range philopatry of seasonally migratory moose. J. Appl. Ecol. 26, 25–33 (1989).

    Article 

    Google Scholar 

  • Rees, E. C. Consistency in the timing of migration for individual Bewick’s swans. Anim. Behav. 38, 384–393 (1989).

    Article 

    Google Scholar 

  • Corten, A. A possible adaptation of herring feeding migrations to a change in timing of the Calanus finmarchicus season in the eastern North Sea. ICES J. Mar. Sci. 57, 1261–1270 (2000).

    Article 

    Google Scholar 

  • Loonstra, A. J. et al. Individual black-tailed godwits do not stick to single routes: a hypothesis on how low population densities might decrease social conformity. Ardea 107, 251–261 (2020).

    Article 

    Google Scholar 

  • Hake, M., Kjellén, N. & Alerstam, T. Age‐dependent migration strategy in honey buzzards Pernis apivorus tracked by satellite. Oikos 103, 385–396 (2003).

    Article 

    Google Scholar 

  • Gupte, P. R., Koffijberg, K., Müskens, G. J. D. M., Wikelski, M. & Kölzsch, A. Family size dynamics in wintering geese. J. Ornithol. 160, 363–375 (2019).

    Article 

    Google Scholar 

  • Gonçalves, M. I. C. et al. Movement patterns of humpback whales (Megaptera novaeangliae) reoccupying a Brazilian breeding ground. Biota Neotrop. 18, e20180567 (2018).

    Article 

    Google Scholar 

  • Trudelle, L. et al. First insights on spatial and temporal distribution patterns of humpback whales in the breeding ground at Sainte Marie Channel, Madagascar. Afr. J. Mar. Sci. 40, 75–86 (2018).

    Article 

    Google Scholar 

  • De La Gala-Hernández, S. R., Heckel, G. & Sumich, J. L. Comparative swimming effort of migrating gray whales (Eschrichtius robustus) and calf cost of transport along Costa Azul, Baja California, Mexico. Can. J. Zool. 86, 307–313 (2008).

    Article 

    Google Scholar 

  • Sword, G. A. Local population density and the activation of movement in migratory band-forming Mormon crickets. Anim. Behav. 69, 437–444 (2005).

    Article 

    Google Scholar 

  • Buhl, J. et al. From disorder to order in marching locusts. Science 312, 1402–1406 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mysterud, A., Loe, L. E., Zimmermann, B., Bischof, R. & Meisingset, E. Partial migration in expanding red deer populations at northern latitudes—a role for density dependence? Oikos 120, 1817–1825 (2011).

    Article 

    Google Scholar 

  • Bukreeva, O. M. & Lidzhi-garyaeva, G. V. Mass migration of social voles (Microtus socialis Pallas, 1773) in the Northwestern Caspian region. Arid Ecosyst. 8, 147–151 (2018).

    Article 

    Google Scholar 

  • Eggeman, S. L., Hebblewhite, M., Bohm, H., Whittington, J. & Merrill, E. H. Behavioural flexibility in migratory behaviour in a long-lived large herbivore. J. Anim. Ecol. 85, 785–797 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Weithman, C. et al. Senescence and carryover effects of reproductive performance influence migration, condition, and breeding propensity in a small shorebird. Ecol. Evol. 7, 11044–11056 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rappole, J. H. & Warner, D. W. Relationships between behavior, physiology and weather in avian transients at a migration stopover site. Oecologia 212, 193–212 (1976).

    Article 

    Google Scholar 

  • Fauchald, P., Mauritzen, M. & Gjøsæter, H. Density‐dependent migratory waves in the marine pelagic ecosystem. Ecology 87, 2915–2924 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Makris, N. C. et al. Critical population density triggers rapid formation of vast oceanic fish shoals. Science 323, 1734–1737 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tøttrup, A. P. & Thorup, K. Sex-differentiated migration patterns, protandry and phenology in North European songbird populations. J. Ornithol. 149, 161–167 (2008).

    Article 

    Google Scholar 

  • Francis, C. M. & Cooke, C. F. Differential timing of spring migration in rose-breasted grosbeaks. J. Field Ornithol. 61, 404–412 (1990).

    Google Scholar 

  • Corgos, A., Verísimo, P. & Freire, J. Timing and seasonality of the terminal molt and mating migration in the spider crab, Maja brachydactyla: evidence of alternative mating strategies. J. Shellfish Res. 25, 577–587 (2006).

    Article 

    Google Scholar 

  • Gordo, O., Sanz, J. J. & Lobo, J. M. Spatial patterns of white stork (Ciconia ciconia) migratory phenology in the Iberian Peninsula. J. Ornithol. 148, 293–308 (2007).

    Article 

    Google Scholar 

  • Sergio, F. et al. Individual improvements and selective mortality shape lifelong migratory performance. Nature 515, 410–413 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Manica, L. T., Graves, J. A., Podos, J. & Macedo, R. H. Hidden leks in a migratory songbird: mating advantages for earlier and more attractive males. Behav. Ecol. 31, 1180–1191 (2020).

    Article 

    Google Scholar 

  • Cade, D. E. et al. Social exploitation of extensive, ephemeral, environmentally controlled prey patches by supergroups of rorqual whales. Anim. Behav. 182, 251–266 (2021).

    Article 

    Google Scholar 

  • Urbanek, R. P., Fondow, L. E. A., Zimorski, S. E., Wellington, M. A. & Nipper, M. A. Winter release and management of reintroduced migratory whooping cranes Grus americana. Bird Conserv. Int. 20, 43–54 (2010).

    Article 

    Google Scholar 

  • Németh, Z. & Moore, F. R. Information acquisition during migration: a social perspective. Auk 131, 186–194 (2014).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Contrasting sea ice conditions shape microbial food webs in Hudson Bay (Canadian Arctic)

    Doubling down on sustainability innovation in Kendall Square