in

Using PVA and captive breeding to balance trade-offs in the rescue of the island dibbler onto a new island ark

  • Burbidge, A. A. & Abbott, I. Mammals on Western Australian islands: occurrence and preliminary analysis. Aust. J. Zool. 65, 183–195. https://doi.org/10.1071/zo17046 (2017).

    Article 

    Google Scholar 

  • Fischer, J. & Lindenmayer, D. B. An assessment of the published results of animal relocations. Biol. Conserv. 96, 1–11. https://doi.org/10.1016/S0006-3207(00)00048-3 (2000).

    Article 

    Google Scholar 

  • Legge, S. et al. Havens for threatened Australian mammals: the contributions of fenced areas and offshore islands to the protection of mammal species susceptible to introduced predators. Wildl. Res. 45, 627–644. https://doi.org/10.1071/wr17172 (2018).

    Article 

    Google Scholar 

  • Morris, K. et al. Forty years of fauna translocations in Western Australia: lessons learned. In Advances in Reintroduction Biology of Australian and New Zealand Fauna (eds Armstrong, D. P. et al.) (CSIRO Publishing, 2015).

    Google Scholar 

  • Seddon, P. J., Moro, D., Mitchell, N. J., Chauvenet, A. & Mawson, P. Proactive conservation or planned
    invasion? Past, current and future use of
    assisted colonisation. In Advances in Reintroduction Biology of Australian and New Zealand Fauna (eds Armstrong, D. P. et al.) (CSIRO Publishing, 2015).

    Google Scholar 

  • Weeks, A. R. et al. Conserving and enhancing genetic
    diversity in translocation programmes. In Advances in Reintroduction Biology of Australian and New Zealand Fauna (eds Armstrong, D. P. et al.) (CSIRO Publishing, 2015).

    Google Scholar 

  • IUCN/SSC. Guidelines for Reintroductions and Other Conservation Translocations. Report No. 1.0, viiii + 57 (Gland, Switzerland, 2013).

  • Allendorf, F. W. & Ryman, N. The role of genetics in population viability analysis. In Population Viability Analysis (eds Beissinger, S. R. & McCullough, D. R.) 50–85 (University of Chicago Press, 2002).

    Google Scholar 

  • Gilpin, M. E. & Soule, M. E. Minimum viable populations: process of species extinctions. In Conservation Biology: The Science of Scarcity and Diversity (ed Soule, M. E.) 19–34 (Sinauer, 1986).

    Google Scholar 

  • Frankham, R. et al. Predicting the probability of outbreeding depression. Conserv. Biol. 25, 465–475. https://doi.org/10.1111/j.1523-1739.2011.01662.x (2011).

    Article 
    PubMed 

    Google Scholar 

  • IUCN. IUCN Red List Categories and Criteria: Version 3.1. iv + 32 (Gland, Switzerland Cambridge, UK, 2012).

  • Willoughby, J. R. et al. The reduction of genetic diversity in threatened vertebrates and new recommendations regarding IUCN conservation rankings. Biol. Conserv. 191, 495–503. https://doi.org/10.1016/j.biocon.2015.07.025 (2015).

    Article 

    Google Scholar 

  • Allendorf, F. W. Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol. 5, 181–190. https://doi.org/10.1002/zoo.1430050212 (1986).

    Article 

    Google Scholar 

  • Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140. https://doi.org/10.1016/j.biocon.2005.05.002 (2005).

    Article 

    Google Scholar 

  • Easton, L. J., Bishop, P. J. & Whigham, P. A. Balancing act: modelling sustainable release numbers for translocations. Anim. Conserv. https://doi.org/10.1111/acv.12558 (2019).

    Article 

    Google Scholar 

  • Allendorf, F. W., England, P. R., Luikart, G., Ritchie, P. A. & Ryman, N. Genetic effects of harvest on wild animal populations. Trends Ecol. Evol. 23, 327–337. https://doi.org/10.1016/j.tree.2008.02.008 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Snyder, N. F. R. & Snyder, H. The California Condor: A Saga of Natural History and Conservation 1st edn. (Princeton University Press, 2000).

    Google Scholar 

  • Kuchling, G., Burbridge, A. A., Page, M. & Olejnik, C. Western Swamp Tortoise Pseudemydura umbrina: slow and steady wins the race. In Recovering Australian Threatened Species: A Book of Hope (eds Garnett, S. et al.) 217–226 (CSIRO, 2018).

    Google Scholar 

  • Hogg, C. J. Preserving Australian native fauna: zoo-based breeding programs as part of a more unified strategic approach. Aust. J. Zool. 61, 101–108. https://doi.org/10.1071/zo13014 (2013).

    Article 

    Google Scholar 

  • Snyder, N. F. R. et al. Limitations of captive breeding in endangered species recovery. Conserv. Biol. 10, 338–348. https://doi.org/10.1046/j.1523-1739.1996.10020338.x (1996).

    Article 

    Google Scholar 

  • Frankham, R. Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol. Ecol. 24, 2610–2618. https://doi.org/10.1111/mec.13139 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Weeks, A. R. et al. Assessing the benefits and risks of translocations in changing environments: A genetic perspective. Evol. Appl. 4, 709–725. https://doi.org/10.1111/j.1752-4571.2011.00192.x (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coyne, J. A. & Orr, H. A. Speciation (Sinauer, 2004).

    Google Scholar 

  • Edmands, S. Between a rock and a hard place: Evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol. Ecol. 16, 463–475. https://doi.org/10.1111/j.1365-294X.2006.03148.x (2007).

    Article 
    PubMed 

    Google Scholar 

  • Armbruster, P., Bradshaw, W. E., Steiner, A. L. & Holzapfel, C. M. Evolutionary responses to environmental stress by the pitcher-plant mosquito, Wyeomyia smithii. Heredity 83, 509–519. https://doi.org/10.1038/sj.hdy.6886040 (1999).

    Article 
    PubMed 

    Google Scholar 

  • Edmands, S. Heterosis and outbreeding depression in interpopulation crosses spanning a wide range of divergence. Evolution 53, 1757–1768. https://doi.org/10.2307/2640438 (1999).

    Article 
    PubMed 

    Google Scholar 

  • Marr, A. B., Keller, L. F. & Arcese, P. Heterosis and outbreeding depression in descendants of natural immigrants to an inbred population of song sparrows (Melospiza melodia). Evolution 56, 131–142 (2002).

    Article 

    Google Scholar 

  • Tymchuk, W. E., Sundstrom, L. F. & Devlin, R. H. Growth and survival trade-offs and outbreeding depression in rainbow trout (Oncorhynchus mykiss). Evolution 61, 1225–1237. https://doi.org/10.1111/j.1558-5646.2007.00102.x (2007).

    Article 
    PubMed 

    Google Scholar 

  • Friend, J. A. Dibbler (Parantechinus apicalis) Recovery Plan July 2003-June 2013 (Department of Conserv. and Land Management, 2003).

    Google Scholar 

  • Miller, S., Bencini, R., Mills, H. & Moro, D. Food availability for the dibbler (Parantechinus apicalis) on Boullanger and Whitlock Islands, Western Australia. Wildl. Res. 30, 649–654. https://doi.org/10.1071/wr01082 (2003).

    Article 

    Google Scholar 

  • Mills, H. R. & Bencini, R. New evidence for facultative male die-off in island populations of dibblers, Parantechinus apicalis. Aust. J. Zool. 48, 501–510. https://doi.org/10.1071/zo00025 (2000).

    Article 

    Google Scholar 

  • Mills, H. R., Moro, D. & Spencer, P. B. S. Conservation significance of island versus mainland populations: A case study of dibblers (Parantechinus apicalis) in Western Australia. Anim. Conserv. 7, 387–395. https://doi.org/10.1017/s1367943004001568 (2004).

    Article 

    Google Scholar 

  • Woolley, P. A. Reproductive pattern of captive Boullanger Island dibblers, Parantechinus apicalis (Marsupialia, Dasyuridae). Wildl. Res. 18, 157–163. https://doi.org/10.1071/wr9910157 (1991).

    Article 

    Google Scholar 

  • Burbridge, A. A. & Woinarski, J. C. Z. Parantechinus apicalis. The IUCN Red List of Threatened Species 2016: e.T16138A21944584. https://www.iucnredlist.org/species/16138/21944584 (2016).

  • Friend, J. A. Island home: A new start for dibblers. Landscope 33, 39–42 (2017).

    Google Scholar 

  • Moro, D. Translocation of captive-bred dibblers Parantechinus apicalis (Marsupialia: Dasyuridae) to Escape Island, Western Australia. Biol. Conserv. 111, 305–315. https://doi.org/10.1016/s0006-3207(02)00296-3 (2003).

    Article 

    Google Scholar 

  • Thavornkanlapachai, R., Mills, H. R., Ottewell, K., Friend, J. A. & Kennington, W. J. Temporal variation in the genetic composition of an endangered marsupial reflects reintroduction history. Diversity https://doi.org/10.3390/d13060257 (2021).

    Article 

    Google Scholar 

  • Morris, K., Page, M., Thomas, N. & Ottewell, K. A Strategic Framework for the Reconstruction and Conservation of the Vertebrate Fauna of Dirk Hartog Island 2016–2030. 26 (Department of Parks and Wildlife, 2017).

    Google Scholar 

  • Thavornkanlapachai, R. Genetic Consequences of Genetic Mixing in Mammal Translocations in Western Australia Using Case Studies of Burrowing Bettongs and Dibblers. Doctor of Philosophy thesis, University of Western Australia (2016).

  • Akcakaya, H. R. & Sjogren-Gulve, P. Population viability analyses in Conserv. planning: an overview. Ecol. Bull. 48, 9–21 (2000).

    Google Scholar 

  • Beissinger, S. R. & McCullough, D. R. Population Viability Analysis (The University of Chicago Press, 2002).

    Google Scholar 

  • Lindenmayer, D. B., Clark, T. W., Lacy, R. C. & Thomas, V. C. Population viability analysis as a tool in wildlife conservation policy—With reference to Australia. Environ. Manag. 17, 745–758. https://doi.org/10.1007/bf02393895 (1993).

    ADS 
    Article 

    Google Scholar 

  • Pacioni, C., Wayne, A. F. & Page, M. Guidelines for genetic management in mammal translocation programs. Biol. Conserv. 237, 105–113. https://doi.org/10.1016/j.biocon.2019.06.019 (2019).

    Article 

    Google Scholar 

  • White, D. J. et al. Genetic consequences of multiple translocations of the banded hare-wallaby in Western Australia. Diversity https://doi.org/10.3390/d12120448 (2020).

    Article 

    Google Scholar 

  • Dickman, C. R. & Braithwaite, R. W. Postmating mortality of males in the Dasyurid marsupials, Dasyurus and Parantechinus. J. Mammal. 73, 143–147. https://doi.org/10.2307/1381875 (1992).

    Article 

    Google Scholar 

  • Lambert, C. & Mills, H. Husbandry and breeding of the dibbler Parantechinus apicalis at Perth Zoo. Int. Zoo Yearb. 40, 290–301 (2006).

    Article 

    Google Scholar 

  • Mills, H. R., Bradshaw, F. J., Lambert, C., Bradshaw, S. D. & Bencini, R. Reproduction in the marsupial dibbler, Parantechinus apicalis; differences between island and mainland populations. Gen. Comp. Endocrinol. 178, 347–354. https://doi.org/10.1016/j.ygcen.2012.06.013 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Fisher, D. O., Dickman, C. R., Jones, M. E. & Blomberg, S. P. Sperm competition drives the evolution of suicidal reproduction in mammals. Proc. Natl. Acad. Sci. USA 110, 17910–17914. https://doi.org/10.1073/pnas.1310691110 (2013).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stewart, A. Dibblers on the Jurien Islands: The Influence of Burrowing Seabirds and the Potential for Competition from Other Species. PhD thesis, University of Western Australia (2006).

  • Sunnucks, P. & Hales, D. F. Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol. Biol. Evol. 13, 510–524. https://doi.org/10.1093/oxfordJ.s.molbev.a025612 (1996).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x (2004).

    CAS 
    Article 

    Google Scholar 

  • Goudet, J. FSTAT (Version 1.2): A computer program to calculate F-statistics. J. Heredity 86, 485–486. https://doi.org/10.1093/oxfordJ.s.jhered.a111627 (1995).

    Article 

    Google Scholar 

  • Peakall, R. & Smouse, P. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537–2239. https://doi.org/10.1093/bioinformatics/bts460 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peakall, R. & Smouse, P. E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x (2006).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2018).

  • Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS 
    Article 

    Google Scholar 

  • Earl, D. A. & Vonholdt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).

    Article 

    Google Scholar 

  • Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Do, C. et al. NEESTIMATOR v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214. https://doi.org/10.1111/1755-0998.12157 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Waples, R. S. A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv. Genet. 7, 167–184. https://doi.org/10.1007/s10592-005-9100-y (2006).

    Article 

    Google Scholar 

  • Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).

    CAS 
    Article 

    Google Scholar 

  • Piry, S., Luikart, G. & Cornuet, J. M. BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Heredity 90, 502–503. https://doi.org/10.1093/jhered/90.4.502 (1999).

    Article 

    Google Scholar 

  • Queller, D. C. & Goodnight, K. F. Estimating relatedness using genetic markers. Evolution 43, 258–275. https://doi.org/10.2307/2409206 (1989).

    Article 
    PubMed 

    Google Scholar 

  • Lacy, R. C. & Pollak, J. P. VORTEX: A Stochastic Simulation of the Extinction Process. Version 10.0 (Brookfield, Illinois, USA, 2014).

  • Lacy, R. C. VORTEX—A computer simulation model for population viability analysis. Wildl. Res. 20, 45–65. https://doi.org/10.1071/wr9930045 (1993).

    Article 

    Google Scholar 

  • Parrott, M. L., Ward, S. J., Temple-Smith, P. D. & Selwood, L. Effects of drought on weight, survival and breeding success of agile antechinus (Antechinus agilis), dusky antechinus (A. swainsonii) and bush rats (Rattus fuscipes). Wildl. Res. 34, 437–442. https://doi.org/10.1071/wr07071 (2007).

    Article 

    Google Scholar 

  • Rhind, S. G. & Bradley, J. S. The effect of drought on body size, growth and abundance of wild brush-tailed phascogales (Phascogale tapoatafa) in south-western Australia. Wildl. Res. 29, 235–245. https://doi.org/10.1071/wr01014 (2002).

    Article 

    Google Scholar 

  • Bureau of Meteorology. Monthly rainfall Jurien Bay. Australian Government. http://www.bom.gov.au/jsp/ncc/cdio/weatherData/av?p_nccObsCode=139&p_display_type=dataFile&p_startYear=&p_c=&p_stn_num=009131 (2020).

  • McCarthy, M. A., Burgman, M. A. & Ferson, S. Sensitivity analysis for models of population viability. Biol. Conserv. 73, 93–100. https://doi.org/10.1016/0006-3207(95)00046-7 (1995).

    Article 

    Google Scholar 

  • Waples, R. S. & Do, C. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: A largely untapped resource for applied conservation and evolution. Evol. Appl. 3, 244–262. https://doi.org/10.1111/j.1752-4571.2009.00104.x (2010).

    Article 
    PubMed 

    Google Scholar 

  • Woinarski, J. C. Z., Burbidge, A. A. & Harrison, P. L. Ongoing unraveling of a continental fauna: Decline and extinction of Australian mammals since European settlement. Proc. Natl. Acad. Sci. USA 112, 4531–4540. https://doi.org/10.1073/pnas.1417301112 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eldridge, M. D. B. et al. Unprecedented low levels of genetic variation and inbreeding depression in an island population of the black-footed rock-wallaby. Conserv. Biol. 13, 531–541. https://doi.org/10.1046/j.1523-1739.1999.98115.x (1999).

    Article 

    Google Scholar 

  • Frankham, R. Do island populations have less genetic variation than mainland populations?. Heredity 78, 311–327. https://doi.org/10.1038/hdy.1997.46 (1997).

    Article 
    PubMed 

    Google Scholar 

  • Wright, S. Evoluation in Mendelian populations. Genetics 16, 0097–0159 (1931).

    CAS 
    Article 

    Google Scholar 

  • Wang, J. L. Estimation of effective population sizes from data on genetic markers. Philos. Trans. R. Soc. B. Sci. 360, 1395–1409. https://doi.org/10.1098/rstb.2005.1682 (2005).

    CAS 
    Article 

    Google Scholar 

  • Frankham, R., Bradshaw, C. J. A. & Brook, B. W. Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol. Conserv. 170, 56–63. https://doi.org/10.1016/j.biocon.2013.12.036 (2014).

    Article 

    Google Scholar 

  • Kennington, W. J., Hevroy, T. H. & Johnson, M. S. Long-term genetic monitoring reveals contrasting changes in the genetic composition of newly established populations of the intertidal snail Bembicium vittatum. Mol. Ecol. 21, 3489–3500. https://doi.org/10.1111/j.1365-294X.2012.05636.x (2012).

    Article 

    Google Scholar 

  • Olson, Z. H., Whittaker, D. G. & Rhodes, O. E. Translocation history and genetic diversity in reintroduced bighorn sheep. J. Wildl. Manag. 77, 1553–1563. https://doi.org/10.1002/jwmg.624 (2013).

    Article 

    Google Scholar 

  • White, L. C., Moseby, K. E., Thomson, V. A., Donnellan, S. C. & Austin, J. J. Long-term genetic consequences of mammal reintroductions into an Australian conservation reserve. Biol. Conserv. 219, 1–11. https://doi.org/10.1016/j.biocon.2017.12.038 (2018).

    Article 

    Google Scholar 

  • Di Fonzo, M. M. I., Pelletier, F., Clutton-Brock, T. H., Pemberton, J. M. & Coulson, T. The population growth consequences of variation in individual heterozygosity. PLoS ONE 6, e19667. https://doi.org/10.1371/J.pone.0019667 (2011).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Foerster, K., Delhey, K., Johnsen, A., Lifjeld, J. T. & Kempenaers, B. Females increase offspring heterozygosity and fitness through extra-pair matings. Nature 425, 714–717. https://doi.org/10.1038/nature01969 (2003).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Pujolar, J. M., Maes, G. E., Vancoillie, C. & Volckaert, F. A. M. Growth rate correlates to individual heterozygosity in the european eel, Anguilla anguilla L.. Evolution 59, 189–199 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Wolfe, K. M., Robertson, H. & Bencini, R. The mating behaviour of the dibbler, Parantechinus apicalis, in captivity. Aust. J. Zool. 48, 541–550. https://doi.org/10.1071/zo00030 (2000).

    Article 

    Google Scholar 

  • Hedrick, P. W., Robinson, J. A., Peterson, R. O. & Vucetich, J. A. Genetics and extinction and the example of Isle Royale wolves. Anim. Conserv. 22, 302–309. https://doi.org/10.1111/acv.12479 (2019).

    Article 

    Google Scholar 

  • Huisman, J., Kruuk, L. E. B., Ellis, P. A., Clutton-Brock, T. & Pemberton, J. M. Inbreeding depression across the lifespan in a wild mammal population. Proc. Natl. Acad. Sci. USA 113, 3585–3590. https://doi.org/10.1073/pnas.1518046113 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nunziata, S. O. & Weisrock, D. W. Estimation of contemporary effective population size and population declines using RAD sequence data. Heredity 120, 196–207. https://doi.org/10.1038/s41437-017-0037-y (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Popa-Baez, A. D. et al. Genome-wide patterns of differentiation over space and time in the Queensland fruit fly. Sci. Rep. 10, 13. https://doi.org/10.1038/s41598-020-67397-5 (2020).

    CAS 
    Article 

    Google Scholar 

  • Lacy, R. C. Importance of genetic variation to the viability of mammalian populations. J. Mammal. 78, 320–335. https://doi.org/10.2307/1382885 (1997).

    Article 

    Google Scholar 

  • Lavery, T. H., Fisher, D. O., Flannery, T. F. & Leung, L. K. P. Higher extinction rates of dasyurids on Australo-Papuan continental shelf islands and the zoogeography of New Guinea mammals. J. Biogeogr. 40, 747–758. https://doi.org/10.1111/jbi.12072 (2013).

    Article 

    Google Scholar 

  • Sigg, D. P. Reduced genetic diversity and significant genetic differentiation after translocation: Comparison of the remnant and translocated populations of bridled nailtail wallabies (Onychogalea fraenata). Conserv. Genet. 7, 577–589. https://doi.org/10.1007/s10592-005-9096-3 (2006).

    Article 

    Google Scholar 

  • Burgman, M. A., Akcakaya, H. R. & Loew, S. S. The use of extinction models for species conservation. Biol. Conserv. 43, 9–25. https://doi.org/10.1016/0006-3207(88)90075-4 (1988).

    Article 

    Google Scholar 

  • Frankham, R. Inbreeding and extinction: Island populations. Conserv. Biol. 12, 665–675. https://doi.org/10.1046/j.1523-1739.1998.96456.x (1998).

    Article 

    Google Scholar 

  • Promislow, D. E. L. & Harvey, P. H. Living fast and dying young—A comparative-analysis of life-history variation among mammals. J. Zool. 220, 417–437. https://doi.org/10.1111/j.1469-7998.1990.tb04316.x (1990).

    Article 

    Google Scholar 

  • CSIRO. State of the Climate 2018 https://www.csiro.au/en/Showcase/state-of-the-climate/ (2018).

  • Harris, R. M. B. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579–587. https://doi.org/10.1038/s41558-018-0187-9 (2018).

    ADS 
    Article 

    Google Scholar 

  • Morita, K. & Yokota, A. Population viability of stream-resident salmonids after habitat fragmentation: A case study with white-spotted charr (Salvelinus leucomaenis) by an individual based model. Ecol. Model. 155, 85–94. https://doi.org/10.1016/s0304-3800(02)00128-x (2002).

    Article 

    Google Scholar 

  • Ottewell, K. et al. Evaluating success of translocations in maintaining genetic diversity in a threatened mammal. Biol. Conserv. 171, 209–219. https://doi.org/10.1016/j.biocon.2014.01.012 (2014).

    Article 

    Google Scholar 

  • Zeoli, L. F., Sayler, R. D. & Wielgus, R. Population viability analysis for captive breeding and reintroduction of the endangered Columbia basin pygmy rabbit. Anim. Conserv. 11, 504–512. https://doi.org/10.1111/j.1469-1795.2008.00208.x (2008).

    Article 

    Google Scholar 

  • Mella, V. S. A., McArthur, C., Krockenberger, M. B., Frend, R. & Crowther, M. S. Needing a drink: Rainfall and temperature drive the use of free water by a threatened arboreal folivore. PLoS ONE 14, e0216964. https://doi.org/10.1371/journal.pone.0216964 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, A. G. et al. Out on a limb: Habitat use of a specialist folivore, the koala, at the edge of its range in a modified semi-arid landscape. Landsc. Ecol. 28, 415–426. https://doi.org/10.1007/s10980-013-9846-4 (2013).

    Article 

    Google Scholar 

  • Akesson, M. et al. Genetic rescue in a severely inbred wolf population. Mol. Ecol. 25, 4745–4756. https://doi.org/10.1111/mec.13797 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heber, S. et al. The genetic rescue of two bottlenecked South Island robin populations using translocations of inbred donors. Proc. R. Soc. B. Sci. 280, 20122228. https://doi.org/10.1098/rspb.2012.2228 (2013).

    CAS 
    Article 

    Google Scholar 

  • Hedrick, P. W. & Fredrickson, R. Genetic rescue guidelines with examples from Mexican wolves and Florida panthers. Conserv. Genet. 11, 615–626. https://doi.org/10.1007/s10592-009-9999-5 (2010).

    Article 

    Google Scholar 

  • Weeks, A. R. et al. Genetic rescue increases fitness and aids rapid recovery of an endangered marsupial population. Nat. Commun. 8, 1071. https://doi.org/10.1038/s41467-017-01182-3 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bell, D. A. et al. The exciting potential and remaining uncertainties of genetic rescue. Trends Ecol. Evol. 34, 1070–1079. https://doi.org/10.1016/j.tree.2019.06.006 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Ralls, K., Sunnucks, P., Lacy, R. C. & Frankham, R. Genetic rescue: A critique of the evidence supports maximizing genetic diversity rather than minimizing the introduction of putatively harmful genetic variation. Biol. Conserv. 251, 8. https://doi.org/10.1016/j.biocon.2020.108784 (2020).

    Article 

    Google Scholar 

  • Ramsey, J., Bradshaw, H. D. & Schemske, D. W. Components of reproductive isolation between the monkeyflowers Mimulus lewisii and M. cardinalis (Phrymaceae). Evolution 57, 1520–1534 (2003).

    Article 

    Google Scholar 

  • Skoracka, A. Reproductive barriers between populations of the cereal rust mite Abacarus hystrix confirm their host specialization. Evol. Ecol. 22, 607–616. https://doi.org/10.1007/s10682-007-9185-5 (2008).

    Article 

    Google Scholar 

  • Vines, T. H. & Schluter, D. Strong assortative mating between allopatric sticklebacks as a by-product of adaptation to different environments. Proc. R. Soc. B. Sci. 273, 911–916. https://doi.org/10.1098/rspb.2005.3387 (2006).

    Article 

    Google Scholar 

  • Keighery, G. J., Alford, J. J. & Longman, V. A vegetation survey of the islands of the Turquoise Coast from Dongara to Lancelin, south-western Australia. Conserv. Sci. West. Aust. 4, 13–62 (2002).

    Google Scholar 


  • Source: Ecology - nature.com

    MIT engineers design surfaces that make water boil more efficiently

    Comparative efficacy of phosphorous supplements with phosphate solubilizing bacteria for optimizing wheat yield in calcareous soils