in

Vitality as a measure of animal welfare during purse seine pumping related crowding of Atlantic mackerel (Scomber scrombrus)

  • Huntingford, F. A. et al. Current issues in fish welfare. J. Fish Biol. 68, 332–372 (2006).

    Article 

    Google Scholar 

  • Kaiser, M. J. & Huntingford, F. A. Introduction to papers on fish welfare in commercial fisheries. J. Fish Biol. 75, 2852–2854 (2009).

    Article 
    CAS 

    Google Scholar 

  • Veldhuizen, L. J. L., Berentsen, P. B. M., de Boer, I. J. M., van de Vis, J. W. & Bokkers, E. A. M. Fish welfare in capture fisheries: A review of injuries and mortality. Fish. Res. 204, 41–48 (2018).

    Article 

    Google Scholar 

  • Breen, M. et al. Catch welfare in commercial fisheries. In The Welfare of Fish (eds Kristiansen, T. S. et al.) 401–437 (Springer, 2020).

    Chapter 

    Google Scholar 

  • Diggles, B. K., Cooke, S. J., Rose, J. D. & Sawynok, W. Ecology and welfare of aquatic animals in wild capture fisheries. Rev. Fish. Biol. Fish. 21, 739–765 (2011).

    Article 

    Google Scholar 

  • Korte, S. M., Olivier, B. & Koolhaas, J. M. A new animal welfare concept based on allostasis. Physiol. Behav. 92, 422–428 (2007).

    Article 
    CAS 

    Google Scholar 

  • Broom, D. M. The scientific assessment of animal welfare. Appl. Anim. Behav. Sci. 20, 5–19 (1988).

    Article 

    Google Scholar 

  • Broom, D. M. Animal welfare: Concepts and measurement. J. Anim. Sci. 69, 4167–4175 (1991).

    Article 
    CAS 

    Google Scholar 

  • Tveit, G. M., Anders, N., Bondø, M. S., Mathiassen, J. R. & Breen, M. Atlantic mackerel (Scomber scombrus) change skin colour in response to crowding stress. J. Fish Biol. 100, 738–747 (2022).

    Article 
    CAS 

    Google Scholar 

  • Noble, C. et al. Welfare Indicators for Farmed Atlantic Salmon: Tools for Assessing Fish Welfare (Nofima, 2018).

    Google Scholar 

  • Sopinka, N. M., Donaldson, M. R., O’Connor, C. M., Suski, C. D. & Cooke, S. J. Stress indicators in fish. In Fish Physiology vol 35 405–462 (Elsevier, 2016).

    Google Scholar 

  • Lawrence, M. J. et al. Are 3 minutes good enough for obtaining baseline physiological samples from teleost fish?. Can. J. Zool. 96, 774–786 (2018).

    Article 
    CAS 

    Google Scholar 

  • Lawrence, M. J. et al. Best practices for non-lethal blood sampling of fish via the caudal vasculature. J. Fish Biol. 97, 4–15 (2020).

    Article 

    Google Scholar 

  • Clark, T. D. et al. The efficacy of field techniques for obtaining and storing blood samples from fishes. J. Fish Biol. 79, 1322–1333 (2011).

    Article 
    CAS 

    Google Scholar 

  • Davis, M. W., Olla, B. L. & Schreck, C. B. Stress induced by hooking, net towing, elevated sea water temperature and air in sablefish: Lack of concordance between mortality and physiological measures of stress. J. Fish Biol. 58, 1–15 (2001).

    Article 

    Google Scholar 

  • Rushen, J. Problems associated with the interpretation of physiological data in the assessment of animal welfare. Appl. Anim. Behav. Sci. 28, 381–386 (1991).

    Article 

    Google Scholar 

  • Dawkins, M. Using behaviour to assess animal welfare. Anim. Welf. 13, 3–7 (2004).

    Google Scholar 

  • Moberg, G. P. & Mench, J. A. The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare (CABI, 2000).

    Book 

    Google Scholar 

  • Wedemeyer, G. A. Effects of rearing conditions on the health and physiological quality of fish in intensive culture. In Fish Stress and Health in Aquaculture vol 278 (Cambridge University Press, 1997).

    Google Scholar 

  • Botreau, R. et al. Aggregation of measures to produce an overall assessment of animal welfare. Part 1: A review of existing methods. Animal 1, 1179–1187 (2007).

    Article 
    CAS 

    Google Scholar 

  • Turnbull, J., Bell, A., Adams, C., Bron, J. & Huntingford, F. Stocking density and welfare of cage farmed Atlantic salmon: Application of a multivariate analysis. Aquaculture 243, 121–132 (2005).

    Article 

    Google Scholar 

  • North, B. P. et al. The impact of stocking density on the welfare of rainbow trout (Oncorhynchus mykiss). Aquaculture 255, 466–479 (2006).

    Article 

    Google Scholar 

  • Spoolder, H., De Rosa, G., Hörning, B., Waiblinger, S. & Wemelsfelder, F. Integrating parameters to assess on-farm welfare. Anim. Welf. 12, 529–534 (2003).

    CAS 

    Google Scholar 

  • Walker, J. K., Dale, A. R., D’Eath, R. B. & Wemelsfelder, F. Qualitative Behaviour Assessment of dogs in the shelter and home environment and relationship with quantitative behaviour assessment and physiological responses. Appl. Anim. Behav. Sci. 184, 97–108 (2016).

    Article 

    Google Scholar 

  • Brscic, M. et al. Welfare assessment: Correlations and integration between a Qualitative Behavioural Assessment and a clinical health protocol applied in veal calves farms. Ital. J. Anim. Sci. 8, 601–603 (2009).

    Article 

    Google Scholar 

  • Andreasen, S. N., Wemelsfelder, F., Sandøe, P. & Forkman, B. The correlation of Qualitative Behavior Assessments with Welfare Quality® protocol outcomes in on-farm welfare assessment of dairy cattle. Appl. Anim. Behav. Sci. 143, 9–17 (2013).

    Article 

    Google Scholar 

  • Phythian, C. J., Michalopoulou, E., Cripps, P. J., Duncan, J. S. & Wemelsfelder, F. On-farm qualitative behaviour assessment in sheep: Repeated measurements across time, and association with physical indicators of flock health and welfare. Appl. Anim. Behav. Sci. 175, 23–31 (2016).

    Article 

    Google Scholar 

  • Davis, M. W., Benoît, H. P., Breen, M., Kopp, D. & Depestele, J. Vitality Assessments. In ICES guidelines for estimating discard survival, ICES Cooperative Research Reports No. 351. 219 (International Council for the Exploration of the Sea, 2021). https://doi.org/10.17895/ices.pub.8006.

  • Stoner, A. W. Assessing stress and predicting mortality in economically significant crustaceans. Rev. Fish. Sci. 20, 111–135 (2012).

    Article 

    Google Scholar 

  • Humborstad, O.-B., Davis, M. W. & Løkkeborg, S. Reflex impairment as a measure of vitality and survival potential of Atlantic cod (Gadus morhua). Fish. Bull. 107, 395–402 (2009).

    Google Scholar 

  • Campbell, M. D., Tolan, J., Strauss, R. & Diamond, S. L. Relating angling-dependent fish impairment to immediate release mortality of red snapper (Lutjanus campechanus). Fish. Res. 106, 64–70 (2010).

    Article 

    Google Scholar 

  • Davis, M. W. Fish stress and mortality can be predicted using reflex impairment. Fish Fish. 11, 1–11 (2010).

    Article 

    Google Scholar 

  • Barkley, A. S. & Cadrin, S. X. Discard mortality estimation of yellowtail flounder using reflex action mortality predictors. Trans. Am. Fish. Soc. 141, 638–644 (2012).

    Article 

    Google Scholar 

  • Raby, G. D. et al. Validation of reflex indicators for measuring vitality and predicting the delayed mortality of wild coho salmon bycatch released from fishing gears. J. Appl. Ecol. 49, 90–98 (2012).

    Article 

    Google Scholar 

  • LeDain, M. R. K. et al. Assisted recovery following prolonged submergence in fishing nets can be beneficial to turtles: An assessment with blood physiology and reflex impairment. Chelonian Conserv. Biol. 12, 172–177 (2013).

    Article 

    Google Scholar 

  • Watson, R. A. & Tidd, A. Mapping nearly a century and a half of global marine fishing: 1869–2015. Mar. Policy 93, 171–177 (2018).

    Article 

    Google Scholar 

  • Ben-Yami, M. Purse seining manual. (1994).

  • Marçalo, A. et al. Mitigating slipping-related mortality from purse seine fisheries for small pelagic fish: Case studies from European Atlantic Waters. In The European Landing Obligation 297–318 (Springer, 2019).

    Chapter 

    Google Scholar 

  • Digre, H., Tveit, G. M., Solvang-Garten, T., Eilertsen, A. & Aursand, I. G. Pumping of mackerel (Scomber scombrus) onboard purse seiners, the effect on mortality, catch damage and fillet quality. Fish. Res. 176, 65–75 (2016).

    Article 

    Google Scholar 

  • Tenningen, M., Vold, A. & Olsen, R. E. The response of herring to high crowding densities in purse-seines: Survival and stress reaction. ICES J. Mar. Sci. 69, 1523–1531 (2012).

    Article 

    Google Scholar 

  • Anders, N., Roth, B. & Breen, M. Physiological response and survival of Atlantic mackerel exposed to simulated purse seine crowding and release. Conserv. Physiol. 9, 25 (2021).

    Article 

    Google Scholar 

  • Anders, N. et al. Effects on individual level behaviour in mackerel (Scomber scombrus) of sub-lethal capture related stressors: Crowding and hypoxia. PLoS One 14, e0213709 (2019).

    Article 
    CAS 

    Google Scholar 

  • Marçalo, A. et al. Behavioural responses of sardines Sardina pilchardus to simulated purse-seine capture and slipping. J. Fish Biol. 83, 480–500 (2013).

    Article 

    Google Scholar 

  • Anders, N., Eide, I., Lerfall, J., Roth, B. & Breen, M. Physiological and flesh quality consequences of pre-mortem crowding stress in Atlantic mackerel (Scomber scombrus). PLoS One 15, e0228454 (2020).

    Article 
    CAS 

    Google Scholar 

  • Olsen, R. E., Oppedal, F., Tenningen, M. & Vold, A. Physiological response and mortality caused by scale loss in Atlantic herring. Fish. Res. 129–130, 21–27 (2012).

    Article 

    Google Scholar 

  • Marçalo, A. et al. Fishing simulation experiments for predicting the effects of purse-seine capture on sardine (Sardina pilchardus). ICES J. Mar. Sci. 67, 334–344 (2010).

    Article 

    Google Scholar 

  • Roth, B. & Skåra, T. Pre mortem capturing stress of Atlantic herring (Clupea harengus) in purse seine and subsequent effect on welfare and flesh quality. Fish. Res. 244, 106124 (2021).

    Article 

    Google Scholar 

  • Marçalo, A. et al. Sardine (Sardina pilchardus) stress reactions to purse seine fishing. Mar. Biol. 149, 1509–1518 (2006).

    Article 

    Google Scholar 

  • ICES. Working Group on Widely Distributed Stocks (WGWIDE). 1019 https://doi.org/10.17895/ices.pub.7475 (2020).

  • Lockwood, S. J., Pawson, M. G. & Eaton, D. R. The effects of crowding on mackerel (Scomber scombrus L)— physical condition and mortality. Fish. Res. 2, 129–147 (1983).

    Article 

    Google Scholar 

  • Huse, I. & Vold, A. Mortality of mackerel (Scomber scombrus L.) after pursing and slipping from a purse seine. Fish. Res. 20, 54–59 (2010).

    Article 

    Google Scholar 

  • Sone, I., Skåra, T. & Olsen, S. H. Factors influencing post-mortem quality, safety and storage stability of mackerel species: A review. Eur. Food Res. Technol. 245, 775–791 (2019).

    Article 
    CAS 

    Google Scholar 

  • Handegard, N. O. et al. Effects on schooling function in mackerel of sub-lethal capture related stressors: Crowding and hypoxia. PLoS One 12, e0190259 (2017).

    Article 

    Google Scholar 

  • Percie du Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. J. Cereb. Blood Flow Metab. 40, 1769–1777 (2020).

    Article 

    Google Scholar 

  • Koolhaas, J. M. et al. Stress revisited: A critical evaluation of the stress concept. Neurosci. Biobehav. Rev. 35, 1291–1301 (2011).

    Article 
    CAS 

    Google Scholar 

  • Tenningen, M., Pobitzer, A., Handegard, N. O. & de Jong, K. Estimating purse seine volume during capture: Implications for fish densities and survival of released unwanted catches. ICES J. Mar. Sci. 76, 2481–2488 (2019).

    Article 

    Google Scholar 

  • Fulton, T. W. The Rate of Growth of Fishes. 141–241 (1904).

  • Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).

    Book 
    MATH 

    Google Scholar 

  • Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11, 54–71 (2006).

    Article 

    Google Scholar 

  • Dray, S. & Dufour, A.-B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).

    Article 

    Google Scholar 

  • Tenningen, M., Peña, H. & Macaulay, G. J. Estimates of net volume available for fish shoals during commercial mackerel (Scomber scombrus) purse seining. Fish. Res. 161, 244–251 (2015).

    Article 

    Google Scholar 

  • Johnston, R., Jones, K. & Manley, D. Confounding and collinearity in regression analysis: A cautionary tale and an alternative procedure, illustrated by studies of British voting behaviour. Qual. Quant. 52, 1957–1976 (2018).

    Article 

    Google Scholar 

  • Burnham, K. & Anderson, D. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).

    MATH 

    Google Scholar 

  • Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: Challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).

    Article 
    CAS 

    Google Scholar 

  • Hartig, F. & Lohse, L. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. (2022).

  • Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Article 

    Google Scholar 

  • Speers-Roesch, B., Mandic, M., Groom, D. J. E. & Richards, J. G. Critical oxygen tensions as predictors of hypoxia tolerance and tissue metabolic responses during hypoxia exposure in fishes. J. Exp. Mar. Biol. Ecol. 449, 239–249 (2013).

    Article 
    CAS 

    Google Scholar 

  • Rogers, N. J., Urbina, M. A., Reardon, E. E., McKenzie, D. J. & Wilson, R. W. A new analysis of hypoxia tolerance in fishes using a database of critical oxygen level (Pcrit). Conserv. Physiol. 4, cow012 (2016).

    Article 

    Google Scholar 

  • Domenici, P., Herbert, N. A., Lefrançois, C., Steffensen, J. F. & McKenzie, D. J. The Effect of Hypoxia on Fish Swimming Performance and Behaviour. In Swimming Physiology of Fish: Towards Using Exercise to Farm a Fit Fish in Sustainable Aquaculture (eds Palstra, A. P. & Planas, J. V.) 129–159 (Springer, 2013).

    Chapter 

    Google Scholar 

  • Johnstone, A. D. F., Wardle, C. S. & Almatar, S. M. Routine respiration rates of Atlantic mackerel, Scomber scombrus L., and herring, Clupea harengus L., at low activity levels. J. Fish Biol. 42, 149–151 (1993).

    Article 

    Google Scholar 

  • Peña, H., Macaulay, G. J., Ona, E., Vatnehol, S. & Holmin, A. J. Estimating individual fish school biomass using digital omnidirectional sonars, applied to mackerel and herring. ICES J. Mar. Sci. 78, 940–951 (2021).

    Article 

    Google Scholar 

  • Kieffer, J. D. Limits to exhaustive exercise in fish. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 126, 161–179 (2000).

    Article 
    CAS 

    Google Scholar 

  • Wardle, C. S. & He, P. Burst swimming speeds of mackerel, Scomber scombrus L. J. Fish Biol. 32, 471–478 (1988).

    Article 

    Google Scholar 

  • Anders, N., Breen, M., Skåra, T., Roth, B. & Sone, I. Effects of capture-related stress and pre-freezing holding in refrigerated sea water (RSW) on the muscle quality and storage stability of Atlantic mackerel (Scomber scombrus) during subsequent frozen storage. Food Chem. https://doi.org/10.1016/j.foodchem.2022.134819 (2022).

    Article 

    Google Scholar 

  • Sogn-Grundvåg, G., Zhang, D. & Iversen, A. Large buyers at a fish auction: The case of the Norwegian pelagic auction. Mar. Policy 104, 232–238 (2019).

    Article 

    Google Scholar 

  • Breen, M. et al. Behaviour & Welfare of Mackerel & Herring During Capture in Purse Seine. 134 https://www.fhf.no/prosjekter/prosjektbasen/901350/ (2021).


  • Source: Ecology - nature.com

    The effects of temperature stress and population origin on the thermal sensitivity of Lymantria dispar L. (Lepidoptera: Erebidae) larvae

    MIT scientists contribute to National Ignition Facility fusion milestone