in

Asymmetric emergence of low-to-no snow in the midlatitudes of the American Cordillera

  • Körner, C., Paulsen, J. & Spehn, E. M. A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alp. Bot. 121, 73–78 (2011).

    Article 

    Google Scholar 

  • Humboldt, A. v. & Bonpland, A. Ideen zu einer Geographie der Pflanzen nebst einem Naturgemälde der Tropenländer (Cotta, 1807).

  • Barry, R. G. Mountain Weather and Climate (Cambridge Univ. Press, 1992).

  • Paulsen, J. & Körner, C. A climate-based model to predict potential treeline position around the globe. Alp. Bot. 124, 1–12 (2014).

    Article 

    Google Scholar 

  • Huss, M. et al. Toward mountains without permanent snow and ice. Earth’s Future 5, 418–435 (2017).

    Article 

    Google Scholar 

  • Smith, R. B. 100 years of progress on mountain meteorology research. Meteorol. Monogr. 59, 20.1–20.73 (2019).

    Article 

    Google Scholar 

  • Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577, 364–369 (2020).

    Article 
    CAS 

    Google Scholar 

  • Bradley, R. S., Keimig, F. T. & Diaz, H. F. Projected temperature changes along the American Cordillera and the planned GCOS network. Geophys. Res. Lett. https://doi.org/10.1029/2004GL020229 (2004).

  • Zappa, G., Ceppi, P. & Shepherd, T. G. Time-evolving sea-surface warming patterns modulate the climate change response of subtropical precipitation over land. Proc. Natl Acad. Sci. USA 117, 4539–4545 (2020).

    Article 
    CAS 

    Google Scholar 

  • Payne, A. E. et al. Responses and impacts of atmospheric rivers to climate change. Nat. Rev. Earth Environ. 1, 143–157 (2020).

    Article 

    Google Scholar 

  • Mooney, H., Dunn, E., Shropshire, F. & Song, L. Vegetation comparisons between the Mediterranean climatic areas of California and Chile. Flora 159, 480–496 (1970).

    Article 

    Google Scholar 

  • di Castri, F. in Mediterranean Type Ecosystems (eds di Castri, F. & Mooney, H. A.) 21–36 (Springer, 1973).

  • Cody, M. L. & Mooney, H. A. Convergence versus nonconvergence in Mediterranean-climate ecosystems. Annu. Rev. Ecol. Syst. 9, 265–321 (1978).

    Article 

    Google Scholar 

  • Morales, M. S. et al. Six hundred years of South American tree rings reveal an increase in severe hydroclimatic events since mid-20th century. Proc. Natl Acad. Sci. USA 117, 16816–16823 (2020).

    Article 
    CAS 

    Google Scholar 

  • Viviroli, D., Kummu, M., Meybeck, M., Kallio, M. & Wada, Y. Increasing dependence of lowland populations on mountain water resources. Nat. Sustain. https://doi.org/10.1038/s41893-020-0559-9 (2020).

  • Siirila-Woodburn, E. et al. A low-to-no snow future and its impacts on water resources in the western United States. Nat. Rev. Earth Environ. 2, 800–819 (2021).

    Article 

    Google Scholar 

  • Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).

    Article 

    Google Scholar 

  • Sturm, M., Goldstein, M. A. & Parr, C. Water and life from snow: a trillion dollar science question. Water Resour. Res. 53, 3534–3544 (2017).

    Article 

    Google Scholar 

  • Saavedra, F. A., Kampf, S. K., Fassnacht, S. R. & Sibold, J. S. Changes in Andes snow cover from MODIS data, 2000–2016. Cryosphere 12, 1027–1046 (2018).

    Article 

    Google Scholar 

  • Garreaud, R. D. et al. The Central Chile Mega Drought (2010–2018): a climate dynamics perspective. Int. J. Climatol. 40, 421–439 (2020).

    Article 

    Google Scholar 

  • Milly, P. C. D. & Dunne, K. A. Colorado River flow dwindles as warming-driven loss of reflective snow energizes evaporation. Science 367, 1252–1255 (2020).

    Article 
    CAS 

    Google Scholar 

  • Muñoz, A. A. et al. Water crisis in Petorca Basin, Chile: the combined effects of a mega-drought and water management. Water https://doi.org/10.3390/w12030648 (2020).

  • Overpeck, J. T. & Udall, B. Climate change and the aridification of North America. Proc. Natl Acad. Sci. USA 117, 11856–11858 (2020).

    Article 
    CAS 

    Google Scholar 

  • Serrano-Notivoli, R. et al. Hydroclimatic variability in Santiago (Chile) since the 16th century. Int. J. Climatol. 41, E2015–E2030 (2021).

    Article 

    Google Scholar 

  • Hock, R. et al. in Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) Ch. 2 (IPCC, Cambridge Univ. Press, 2019).

  • Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article 

    Google Scholar 

  • Xu, Y. & Ramanathan, V. Latitudinally asymmetric response of global surface temperature: implications for regional climate change. Geophys. Res. Lett. https://doi.org/10.1029/2012GL052116 (2012).

  • Friedman, A. R., Hwang, Y.-T., Chiang, J. C. & Frierson, D. M. Interhemispheric temperature asymmetry over the twentieth century and in future projections. J. Clim. 26, 5419–5433 (2013).

    Article 

    Google Scholar 

  • Putnam, A. E. & Broecker, W. S. Human-induced changes in the distribution of rainfall. Sci. Adv. https://doi.org/10.1126/sciadv.1600871 (2017).

  • Allan, R. P. et al. Advances in understanding large-scale responses of the water cycle to climate change. Ann. N. Y. Acad. Sci. 1472, 49–75 (2020).

    Article 

    Google Scholar 

  • Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 5, 180040 (2018).

    Article 

    Google Scholar 

  • Shea, J. M., Whitfield, P. H., Fang, X. & Pomeroy, J. W. The role of basin geometry in mountain snowpack responses to climate change. Front. Water 3, 4 (2021).

    Article 

    Google Scholar 

  • Patricola, C. M. et al. Maximizing ENSO as a source of western US hydroclimate predictability. Clim. Dyn. https://doi.org/10.1007/s00382-019-05004-8 (2019).

  • Eidhammer, T., Grubišić, V., Rasmussen, R. & Ikdea, K. Winter precipitation efficiency of mountain ranges in the Colorado Rockies under climate change. J. Geophys. Res. Atmos. 123, 2573–2590 (2018).

    Article 

    Google Scholar 

  • Lynn, E. et al. Technical note: precipitation-phase partitioning at landscape scales to regional scales. Hydrol. Earth Syst. Sci. 24, 5317–5328 (2020).

    Article 
    CAS 

    Google Scholar 

  • Bales, R. C. et al. Mountain hydrology of the western United States. Water Resour. Res. https://doi.org/10.1029/2005WR004387 (2006).

  • Jennings, K., Winchell, T. S., Livneh, B. & Molotch, N. P. Spatial variation of the rain–snow temperature threshold across the northern hemisphere. Nat. Commun. https://doi.org/10.1038/s41467-018-03629-7 (2018).

  • Colombo, R. et al. Introducing thermal inertia for monitoring snowmelt processes with remote sensing. Geophys. Res. Lett. 46, 4308–4319 (2019).

    Article 

    Google Scholar 

  • Demory, M. et al. The role of horizontal resolution in simulating drivers of the global hydrological cycle. Clim. Dyn. 42, 2201–2225 (2013).

    Article 

    Google Scholar 

  • Rhoades, A. M., Ullrich, P. A. & Zarzycki, C. M. Projecting 21st century snowpack trends in western USA mountains using variable-resolution CESM. Clim. Dyn. 50, 261–288 (2017).

    Article 

    Google Scholar 

  • Kapnick, S. B. et al. Potential for western US seasonal snowpack prediction. Proc. Natl Acad. Sci. USA 115, 1180–1185 (2018).

    Article 
    CAS 

    Google Scholar 

  • Palazzi, E., Mortarini, L., Terzago, S. & Von Hardenberg, J. Elevation-dependent warming in global climate model simulations at high spatial resolution. Clim. Dyn. 52, 2685–2702 (2019).

    Article 

    Google Scholar 

  • Haarsma, R. J. et al. High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geosci. Model Dev. 9, 4185–4208 (2016).

    Article 

    Google Scholar 

  • O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Article 

    Google Scholar 

  • Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 127, 1–15 (2017).

    Article 

    Google Scholar 

  • Conover, W. J. Practical Nonparametric Statistics Vol. 350 (John Wiley & Sons, 1999).

  • Woodhouse, C. A. & Pederson, G. T. Investigating runoff efficiency in Upper Colorado River streamflow over past centuries. Water Resour. Res. 54, 286–300 (2018).

    Article 

    Google Scholar 

  • Lehner, F., Wahl, E. R., Wood, A. W., Blatchford, D. B. & Llewellyn, D. Assessing recent declines in Upper Rio Grande runoff efficiency from a paleoclimate perspective. Geophys. Res. Lett. 44, 4124–4133 (2017).

    Article 

    Google Scholar 

  • Berghuijs, W., Woods, R. & Hrachowitz, M. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Clim. Change 4, 583–586 (2014).

    Article 

    Google Scholar 

  • Li, D., Wrzesien, M. L., Durand, M., Adam, J. & Lettenmaier, D. P. How much runoff originates as snow in the western United States, and how will that change in the future? Geophys. Res. Lett. 44, 6163–6172 (2017).

    Article 

    Google Scholar 

  • Livneh, B. & Badger, A. M. Drought less predictable under declining future snowpack. Nat. Clim. Change 10, 452–458 (2020).

    Article 

    Google Scholar 

  • Trujillo, E. & Molotch, N. P. Snowpack regimes of the western United States. Water Resour. Res. 50, 5611–5623 (2014).

    Article 

    Google Scholar 

  • Musselman, K. N., Clark, M. P., Liu, C., Ikeda, K. & Rasmussen, R. Slower snowmelt in a warmer world. Nat. Clim. Change 7, 214–219 (2017).

    Article 

    Google Scholar 

  • Barnhart, T. B., Tague, C. L. & Molotch, N. P. The counteracting effects of snowmelt rate and timing on runoff. Water Resour. Res. 56, e2019WR026634 (2020).

    Article 

    Google Scholar 

  • Bambach, N. E. et al. Projecting climate change in South America using variable-resolution Community Earth System Model: an application to Chile. Int. J. Climatol. https://doi.org/10.1002/joc.7379 (2021).

  • Rhoades, A. M. et al. The shifting scales of western U.S. landfalling atmospheric rivers under climate change. Geophys. Res. Lett. 47, e2020GL089096 (2020).

    Article 

    Google Scholar 

  • Rhoades, A. M., Risser, M. D., Stone, D. A., Wehner, M. F. & Jones, A. D. Implications of warming on western United States landfalling atmospheric rivers and their flood damages. Weather Clim. Extrem. 32, 100326 (2021).

    Article 

    Google Scholar 

  • Milly, P. C. D. et al. Stationarity is dead: whither water management? Science 319, 573–574 (2008).

    Article 
    CAS 

    Google Scholar 

  • Cosgrove, W. J. & Loucks, D. P. Water management: current and future challenges and research directions. Water Resour. Res. 51, 4823–4839 (2015).

    Article 

    Google Scholar 

  • Fernández, A. et al. Dendrohydrology and water resources management in south-central Chile: lessons from the Río Imperial streamflow reconstruction. Hydrol. Earth Syst. Sci. 22, 2921–2935 (2018).

    Article 

    Google Scholar 

  • Castilla-Rho, J., Rojas, R., Andersen, M., Holley, C. & Mariethoz, G. Sustainable groundwater management: how long and what will it take? Glob. Environ. Change 58, 101972 (2019).

    Article 

    Google Scholar 

  • Scanlon, B. R., Reedy, R. C., Faunt, C. C., Pool, D. & Uhlman, K. Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona. Environ. Res. Lett. 11, 035013 (2016).

    Article 

    Google Scholar 

  • Sterle, K., Hatchett, B. J., Singletary, L. & Pohll, G. Hydroclimate variability in snow-fed river systems: local water managers’ perspectives on adapting to the new normal. Bull. Am. Meteorol. Soc. 100, 1031–1048 (2019).

    Article 

    Google Scholar 

  • Dillon, P. et al. Sixty years of global progress in managed aquifer recharge. Hydrogeol. J. 27, 1–30 (2019).

    Article 

    Google Scholar 

  • Delaney, C. J. et al. Forecast informed reservoir operations using ensemble streamflow predictions for a multipurpose reservoir in Northern California. Water Resour. Res. 56, e2019WR026604 (2020).

    Article 

    Google Scholar 

  • Szinai, J. K., Deshmukh, R., Kammen, D. M. & Jones, A. D. Evaluating cross-sectoral impacts of climate change and adaptations on the energy–water nexus: a framework and California case study. Environ. Res. Lett. 15, 124065 (2020).

    Article 

    Google Scholar 

  • Vicuña, S. et al. in Water Resources of Chile (eds Fernández, B. & Gironás, J.) 347–363 (Springer International, 2021).

  • Williams, J. H. et al. Carbon-neutral pathways for the United States. AGU Adv. 2, e2020AV000284 (2021).

    Article 

    Google Scholar 

  • Fasullo, J. T. Evaluating simulated climate patterns from the CMIP archives using satellite and reanalysis datasets using the Climate Model Assessment Tool (CMATv1). Geosci. Model Dev. 13, 3627–3642 (2020).

    Article 

    Google Scholar 

  • Hirai, M. et al. Development and validation of a new land surface model for JMA’s operational global model using the CEOP observation dataset. J. Meteorol. Soc. Japan II 85A, 1–24 (2007).

    Article 

    Google Scholar 

  • Baldwin, J. W., Atwood, A. R., Vecchi, G. A. & Battisti, D. S. Outsize influence of Central American orography on global climate. AGU Adv. 2, e2020AV000343 (2021).

    Article 

    Google Scholar 

  • Rhoades, A. M. et al. Sensitivity of mountain hydroclimate simulations in variable-resolution CESM to microphysics and horizontal resolution. J. Adv. Model. Earth Syst. 10, 1357–1380 (2018).

    Article 

    Google Scholar 

  • Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1108 (2009).

    Article 

    Google Scholar 

  • Hawkins, E., Smith, R. S., Gregory, J. M. & Stainforth, D. A. Irreducible uncertainty in near-term climate projections. Clim. Dyn. 46, 3807–3819 (2016).

    Article 

    Google Scholar 

  • Lehner, F. et al. Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth Syst. Dyn. 11, 491–508 (2020).

    Article 

    Google Scholar 

  • Marshall, A. M., Abatzoglou, J. T., Link, T. E. & Tennant, C. J. Projected changes in interannual variability of peak snowpack amount and timing in the western United States. Geophys. Res. Lett. 46, 8882–8892 (2019).

    Article 

    Google Scholar 

  • Huning, L. S. & AghaKouchak, A. Global snow drought hot spots and characteristics. Proc. Natl Acad. Sci. USA 117, 19753–19759 (2020).

    Article 
    CAS 

    Google Scholar 

  • Hatchett, B. J., Rhoades, A. M. & McEvoy, D. J. Monitoring the daily evolution and extent of snow drought. Nat. Hazards Earth Syst. Sci. 22, 869–890 (2022).

    Article 

    Google Scholar 

  • Svoboda, M. et al. The Drought Monitor. Bull. Am. Meteorol. Soc. 83, 1181–1190 (2002).

    Article 

    Google Scholar 

  • Sexstone, G. A., Driscoll, J. M., Hay, L. E., Hammond, J. C. & Barnhart, T. B. Runoff sensitivity to snow depletion curve representation within a continental scale hydrologic model. Hydrol. Process. 34, 2365–2380 (2020).

    Google Scholar 

  • Mote, P. W., Li, S., Lettenmaier, D. P., Xiao, M. & Engel, R. Dramatic declines in snowpack in the western US. NPJ Clim. Atmos. Sci. 1, 2 (2018).

    Article 

    Google Scholar 

  • Huning, L. S. & AghaKouchak, A. Approaching 80 years of snow water equivalent information by merging different data streams. Sci. Data 7, 333 (2020).

    Article 

    Google Scholar 

  • Mote, P. W. et al. Perspectives on the causes of exceptionally low 2015 snowpack in the western United States. Geophys. Res. Lett. 43, 10980–10988 (2016).

    Article 

    Google Scholar 


  • Source: Resources - nature.com

    Crop diversification and parasitic weed abundance: a global meta-analysis

    With new heat treatment, 3D-printed metals can withstand extreme conditions