in

A bolder conservation future for Indonesia by prioritising biodiversity, carbon and unique ecosystems in Sulawesi

  • Jepson, P. R. et al. Protected area asset stewardship. Biol. Conserv. 212, 183–190 (2017).

    Article 

    Google Scholar 

  • Joppa, L. N., Loarie, S. R. & Pimm, S. L. On the protection of “protected areas”. Proc. Natl. Acad. Sci. 105, 6673–6678 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rija, A. A., Critchlow, R., Thomas, C. D. & Beale, C. M. Global extent and drivers of mammal population declines in protected areas under illegal hunting pressure. PLoS ONE 15, e0227163 (2020).

    Article 
    CAS 

    Google Scholar 

  • Tyrrell, P., du Toit, J. T. & Macdonald, D. W. Conservation beyond protected areas: Using vertebrate species ranges and biodiversity importance scores to inform policy for an East African country in transition. Conserv. Sci. Pract. https://doi.org/10.1111/csp2.136 (2019).

    Article 

    Google Scholar 

  • Gaveau, D. L. A. et al. Evaluating whether protected areas reduce tropical deforestation in Sumatra. J. Biogeogr. 36, 2165–2175 (2009).

    Article 

    Google Scholar 

  • Grantham, H. S. et al. Spatial priorities for conserving the most intact biodiverse forests within Central Africa. Environ. Res. Lett. 15, 222 (2020).

    Article 

    Google Scholar 

  • Setyawati, T. et al. Planning to remove UNESCO World Heritage Sites in Sumatra from being ‘In Danger’. Anim. Conserv. 24, 149–152 (2020).

    Article 

    Google Scholar 

  • Naidoo, R. et al. Evaluating the impacts of protected areas on human well-being across the developing world. Sci. Adv. 5, 1–8 (2019).

    Article 

    Google Scholar 

  • Adams, V. M., Visconti, P., Graham, V. & Possingham, H. P. Indicators keep progress honest: A call to track both the quantity and quality of protected areas. One Earth 4, 901–906 (2021).

    Article 
    ADS 

    Google Scholar 

  • Banks-Leite, C., Larrosa, C., Carrasco, L. R., Tambosi, L. R. & Milner-Gulland, E. J. The suggestion that landscapes should contain 40% of forest cover lacks evidence and is problematic. Ecol. Lett. https://doi.org/10.1111/ele.13668 (2021).

    Article 

    Google Scholar 

  • CBD. Key Elements of the Strategic Plan 2011–2020, including Aichi Biodiversity Targets. (2011). https://www.cbd.int/sp/elements/default.shtml.

  • CBD. First Draft of the Post-2020 Global Biodiversity Framework. Angewandte Chemie Int. Edn. 6(11), 1–12 (2021).

  • Hannah, L. et al. 30% land conservation and climate action reduces tropical extinction risk by more than 50%. Ecography (Cop.) 43, 943–953 (2020).

    Article 

    Google Scholar 

  • Waldron, A. et al. Protecting 30% of the planet for nature: Costs, benefits and economic implications. In Working paper analysing the economic implications of the proposed 30% target for areal protection in the draft post-2020 Global Biodiversity Framework. (2020).

  • Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).

    Article 

    Google Scholar 

  • Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (Liveright Publishing Corporation, 2016).

    Google Scholar 

  • Dwiyahreni, A. A. et al. Changes in the human footprint in and around Indonesia’s terrestrial national parks between 2012 and 2017. Sci. Rep. 11, 1–14 (2021).

    Article 

    Google Scholar 

  • KSDAE, M. D. Statistik Direktorat Jenderal KSDAE 2017. (Kementerian Lingkungan Hidup dan Kehutanan Direktorat Jenderal Konservasi Sumber Daya Alam dan Ekosistem, 2018).

  • Wallace, A. R. Natural History of Celebes. In The Malay Archipelago 424–447 (Cambridge University Press, 1869).

  • MacKinnon, J. R. & MacKinnon, K. Review of the protected areas system in the Indo-Malayan Realm. (International Union for Conservation of Nature and Natural Resources (IUCN), 1986).

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Olson, D. M. & Dinerstein, E. The Global 200: Priority ecoregions for global conservation. Ann. Missouri Bot. Gard. 89, 199–224 (2002).

    Article 

    Google Scholar 

  • Hunowu, I. et al. New insights into Sulawesi’s apex predator: The Sulawesi civet Macrogalidia musschenbroekii. Oryx 54, 878–881 (2020).

    Article 

    Google Scholar 

  • Johnson, C. L. et al. Camera traps clarify the distribution boundary between the crested black Macaque (Macaca nigra) and Gorontalo Macaque (Macaca nigrescens) in North Sulawesi. Int. J. Primatol. https://doi.org/10.1007/s10764-019-00082-1 (2019).

    Article 

    Google Scholar 

  • Joyce, E., Thiele, K., Slik, F. & Crayn, D. Checklist of the vascular flora of the Sunda-Sahul Convergence Zone. Biodivers. Data J. 8, e51094 (2020).

    Article 

    Google Scholar 

  • Middleton, D. J. et al. Progress on Southeast Asia’s Flora projects. Gard. Bull. Singapore 71, 267–319 (2019).

    Article 

    Google Scholar 

  • Trethowan, L. A. et al. An enigmatic genus on an enigmatic island: The re-discovery of Kalappia on Sulawesi. Ecology 100, e02793 (2019).

    Article 

    Google Scholar 

  • Junaid, A. R., Jihad & Hasudungan, F. Burung-burung di Indonesia: Daftar dan Status 2021. (Burung Indonesia, 2021).

  • Whitten, T., Henderson, G. S. & Mustafa, M. The Ecology of Sulawesi. 4, (Gajah Mada University Press, 1987).

  • Maryanto, I. et al. Checklist of The Mammals of Indonesia 3rd edn, (2019).

  • Chen, S. et al. Ecosystem carbon stock of a tropical mangrove forest in North Sulawesi, Indonesia. Acta Oceanol. Sin. 37, 85–91 (2018).

    Article 
    CAS 

    Google Scholar 

  • Culmsee, H., Leuschner, C., Moser, G. & Pitopang, R. Forest aboveground biomass along an elevational transect in Sulawesi, Indonesia, and the role of Fagaceae in tropical montane rain forests. J. Biogeogr. 37, 960–974 (2010).

    Article 

    Google Scholar 

  • Van der Ent, A., Baker, A. J. M., van Balgooy, M. M. J. & Tjoa, A. Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): Mining, nickel hyperaccumulators and opportunities for phytomining. J. Geochemical Explor. 128, 72–79 (2013).

    Article 

    Google Scholar 

  • Pandyaswargo, A. H., Wibowo, A. D., Maghfiroh, M. F. N., Rezqita, A. & Onoda, H. The emerging electric vehicle and battery industry in Indonesia: Actions around the nickel ore export ban and a SWOT analysis. Batter. 7, 80 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zhu, L. et al. Regional scalable priorities for national biodiversity and carbon conservation planning in Asia. Sci. Adv. 7, eabe4261 (2021).

    Article 
    ADS 

    Google Scholar 

  • Smith, R. J. et al. Synergies between the key biodiversity area and systematic conservation planning approaches. Conserv. Lett. 12, 1–10 (2018).

    Google Scholar 

  • Ball, I. R., Possingham, H. P. & Watts, M. E. Marxan and relatives: Software for spatial conservation prioritization. In Spatial Conservation Prioritization: Quantitative Methods and Computational Tools (eds Moilanen, A. et al.) 185–195 (Oxford University Press, 2009).

    Google Scholar 

  • Game, E. T. & Grantham, H. S. Marxan User Manual: For Marxan version 1.8.10. University of Queensland, St. Lucia, Queensland, Australia, and Pacific Marine Analysis and Research Association 127 (2008).

  • BPS. Hasil Sensus Penduduk 2020. Berita Resmi Statistik 1–22 (2021).

  • BPS. Data dan Informasi Kemiskinan Kabupaten/Kota Tahun 2020. 3205014, (Badan Pusat Statistik, 2020).

  • Voigt, M. et al. Emerging threats from deforestation and forest fragmentation in the Wallacea centre of endemism. Environ. Res. Lett. 16, 094048 (2021).

    Article 
    ADS 

    Google Scholar 

  • KLHK. Deforestasi Indonesia Tahun 2017–2018. Direktorat Inventarisasi dan Pemantauan Sumber Daya Hutan. Direktorat Jenderal Planologi Kehutanan dan Tata Lingkungan. 64, (Direktorat Inventarisasi dan Pemantauan Sumber Daya Hutan, Direktorat Jenderal Planologi Kehutanan dan Tata Lingkungan, Kementerian Lingkungan Hidup dan Kehutanan, 2019).

  • Supriatna, J. et al. Deforestation on the Indonesian island of Sulawesi and the loss of primate habitat. Glob. Ecol. Conserv. 24, e01205 (2020).

    Article 

    Google Scholar 

  • Kadir, A., Suaib, E. & Zuada, L. H. Mining in Southeast Sulawesi and Central Sulawesi: Shadow economy and environmental damage regional autonomy Era in Indonesia. Adv. Soc. Sci. Educ. Hum. Res. 404, 20–27 (2020).

    Google Scholar 

  • Clements, R., Sodhi, N. S., Schilthuizen, M. & Ng, P. K. L. Limestone karsts of southeast Asia: Imperiled arks of biodiversity. Bioscience 56, 733–742 (2006).

    Article 

    Google Scholar 

  • Albani, A. et al. Activity budget, home range, and habitat use of moor macaques (Macaca maura) in the karst forest of South Sulawesi, Indonesia. Primates https://doi.org/10.1007/s10329-020-00811-8 (2020).

    Article 

    Google Scholar 

  • Coleman, J. L. et al. Top 100 research questions for biodiversity conservation in Southeast Asia. Biol. Conserv. 234, 211–220 (2019).

    Article 

    Google Scholar 

  • Thomas, D. C., Bour, A. & Ardi, W. H. Begonia of the Matarombeo karst, Southeast Sulawesi, Indonesia, including two new species. Gard. Bull. Singapore 70, 163–176 (2018).

    Article 

    Google Scholar 

  • Galey, M. L., van der Ent, A., Iqbal, M. C. M. & Rajakaruna, N. Ultramafic geoecology of South and Southeast Asia. Bot. Stud. 58, 1–28 (2017).

    Article 

    Google Scholar 

  • Rahbek, C. et al. Building mountain biodiversity: Geological and evolutionary processes. Science (80-.). 365, 1114–1119 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Atmadja, R. S., J P Golightly & B N Wahju. View of Mafic and Ultramafic Rock Association in the East Arc of Sulawesi. In Proceedings ITB (1974).

  • CBD. First Draft of the Post-2020 Global Biodiversity Framework. (2021).

  • Noss, R. F. et al. Bolder thinking for conservation. Conserv. Biol. 26, 1–4 (2012).

    Article 

    Google Scholar 

  • Soto-Navarro, C. et al. Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and action. Philos. Trans. R. Soc. B Biol. Sci. 375, 128 (2020).

    Article 

    Google Scholar 

  • MoEF (Ministry of Environment and Forestry of Indonesia). Rekalkulasi Penutupan Lahan (Land Cover Recalculation) Indonesia Tahun 2018. (2019).

  • Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ardron, J. A., Possingham, H. P. & Klein, C. J. Marxan Good Practices Handbook, Version 2. Pacific Marine Analysis and Research Association 165 (2010).

  • Zhang, X. & Vincent, A. C. J. Conservation prioritization for seahorses (Hippocampus spp.) at broad spatial scales considering socioeconomic costs. Biol. Conserv. 235, 79–88 (2019).

    Article 

    Google Scholar 

  • Bingham, H. C. et al. User Manual for the World Database on Protected Areas and world database on other effective area- based conservation measures: 1 . 6 User Manual for the World Database on Protected Areas and world database on other effective area-. (2019).

  • McHugh, M. L. Interrater reliability: The kappa statistic. Biochem. Med. 22, 276–282 (2012).

    Article 

    Google Scholar 

  • CEPF. Wallacea Biodiversity Hotspot-Ecosystem profile. (CEPF, 2014).

  • Johnson, C. L. et al. Using occupancy-based camera-trap surveys to assess the critically endangered primate Macaca Nigra across its range in North Sulawesi, Indonesia. Oryx https://doi.org/10.1017/S0030605319000851 (2020).

    Article 

    Google Scholar 

  • Darbyshire, I. et al. Important Plant Areas: Revised selection criteria for a global approach to plant conservation. Biodivers. Conserv. 26, 1767–1800 (2017).

    Article 

    Google Scholar 

  • Trethowan, L. A. et al. Metal-rich soils increase tropical tree stoichiometric distinctiveness. Plant Soil 461, 579–589 (2021).

    Article 
    CAS 

    Google Scholar 

  • Trethowan, L. A. et al. Floristics of forests across low nutrient soils in Sulawesi, Indonesia. Biotropica 52, 1309–1318 (2020).

    Article 

    Google Scholar 

  • Rustiami, H. & Henderson, A. A Synopsis of Calamus (Arecaceae) in Sulawesi. Reinwardtia 16, 49–63 (2017).

    Article 

    Google Scholar 

  • MoEF Ditjen KSDAE. Statistik Direktorat Jenderal KSDAE 2017. (2018).

  • Gunawan, H. & Sugiarti. Mekongga: Hidden Paradise of Sulawesi’s Biodiversity. (LIPI Press, 2014).

  • Gunawan, H. & Sugiarti. Perlunya Penunjukan Kawasan Konservasi Baru Untuk Mengantisipasi Degradasi Keanekaragaman Hayati Akibat Perubahan RTWT dKawasan Wallacea (Lesson Learnt Inisiasi Pengusulan Taman Nasional Mekongga, Sulawesi Tenggara). BioWallacea J. Ilm. Ilmu Biol. 1, 122–133 (2015).

  • Milner-Gulland, E. J. et al. Four steps for the earth: Mainstreaming the post-2020 global biodiversity framework. One Earth 2050, 75–87 (2021).

    Article 
    ADS 

    Google Scholar 

  • IUCN-WCPA. Recognising and reporting other effective area-based conservation measures. (IUCN, International Union for Conservation of Nature, 2019). https://doi.org/10.2305/IUCN.CH.2019.PATRS.3.en

  • Alvard, M. The potential for sustainable harvests by traditional wana hunters in morowali nature reserve, Central Sulawesi, Indonesia. Hum. Organ. 59, 428–440 (2000).

    Article 

    Google Scholar 

  • Hilser, H. Collective stewardship and pathways to change: Understanding pro-social values, connectedness to nature and empathic capacity to cultivate ecocentrism in rural communities of North Sulawesi, Indonesia Harry Hilser, Ph.D. Human Geography. (University of Exeter, 2021).

  • Hariandja, R. Pemetaan Wilayah Adat Lebih 20 Juta Hektar tetapi Pengakuan Minim, Mengapa? Mongabay (2022). https://www.mongabay.co.id/2022/09/03/peta-partisipatif-wilayah-adat-lebih-20-juta-tetapi-pengakuan-minim-mengapa/. (Accessed 23 Sep 2022)

  • BRWA. Infografis Status Pengakuan Wilayah Adat di Indonesia. 6 (2022).

  • BRWA. GIS-BRWA: Peta Wilayah Adat. Peta Interaktif (2022). https://www.brwa.or.id/sig/. (Accessed 23 Sep 2022)

  • Carver, S. et al. Guiding principles for rewilding. Conserv. Biol. 35, 1882–1893 (2021).

    Article 

    Google Scholar 

  • Jepson, P. & Blythe, C. Rewilding [electronic resource] / the radical new science of ecological recovery. (2020).

  • Sheherazade, O. H. K. & Tsang, S. M. Contributions of bats to the local economy through durian pollination in Sulawesi, Indonesia. Biotropica 2, 1–10 (2019).

    Google Scholar 


  • Source: Ecology - nature.com

    The impact of the striped field mouse’s range expansion on communities of native small mammals

    Modeling marine cargo traffic to identify countries in Africa with greatest risk of invasion by Anopheles stephensi