in

A longer wood growing season does not lead to higher carbon sequestration

  • Verkerk, P., et al. Forest products in the global bioeconomy. The role of forest products in the global bioeconomy—Enabling substitution by wood-based products and contributing to the Sustainable Development Goals (2022). https://doi.org/10.4060/cb7274en

  • Chen, J., Ter-Mikaelian, M. T., Ng, P. Q. & Colombo, S. J. Ontario’s managed forests and harvested wood products contribute to greenhouse gas mitigation from 2020 to 2100. For. Chron. 43, 269–282 (2018).

    Google Scholar 

  • Howard, C., Dymond, C. C., Griess, V. C., Tolkien-Spurr, D. & van Kooten, G. C. Wood product carbon substitution benefits: A critical review of assumptions. Carbon Balance Manag. 16, 1–11 (2021).

    Article 

    Google Scholar 

  • Eriksson, L. O. et al. Climate change mitigation through increased wood use in the European construction sector-towards an integrated modelling framework. Eur. J. For. Res. 131, 131–144 (2012).

    Article 

    Google Scholar 

  • Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science (80-.) 333, 988–993 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chuine, I. Why does phenology drive species distribution?. Philos. Trans. R. Soc. B Biol. Sci. 365, 3149–3160 (2010).

    Article 

    Google Scholar 

  • Silvestro, R. et al. From phenology to forest management: Ecotypes selection can avoid early or late frosts, but not both. For. Ecol. Manag. 436, 21–26 (2019).

    Article 

    Google Scholar 

  • Buttò, V., Rossi, S., Deslauriers, A. & Morin, H. Is size an issue of time? Relationship between the duration of xylem development and cell traits. Ann. Bot. 123, 1257–1265 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cartenì, F. et al. The physiological mechanisms behind the earlywood-to-latewood transition: A process-based modeling approach. Front. Plant Sci. 9, 1053 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buttò, V., Rozenberg, P., Deslauriers, A., Rossi, S. & Morin, H. Environmental and developmental factors driving xylem anatomy and micro-density in black spruce. New Phytol. 230, 957–971 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Buttó, V. et al. Regionwide temporal gradients of carbon allocation allow for shoot growth and latewood formation in boreal black spruce. Glob. Ecol. Biogeogr. 30, 1657–1670 (2021).

    Article 

    Google Scholar 

  • Rathgeber, C. B. K. et al. Anatomical, developmental and physiological bases of tree-ring formation in relation to environmental factors. In Stable Isotopes in Tree Rings Vol. 8 (eds Siegwolf, R. T. W. et al.) 61–99 (Springer, Cham, 2022).

    Chapter 

    Google Scholar 

  • Dória, L. C., Sonsin-Oliveira, J., Rossi, S. & Marcati, C. R. Functional trade-offs in volume allocation to xylem cell types in 75 species from the Brazilian savanna Cerrado. Ann. Bot. 130, 445–456 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Rossi, S., Cairo, E., Krause, C. & Deslauriers, A. Growth and basic wood properties of black spruce along an alti-latitudinal gradient in Quebec, Canada. Ann. For. Sci. 72, 77–87 (2015).

    Article 

    Google Scholar 

  • Shi, J. L., Riedl, B., Deng, J., Cloutier, A. & Zhang, S. Y. Impact of log position in the tree on mechanical and physical properties of black spruce medium-density fibreboard panels. Can. J. For. Res. 37, 866–873 (2007).

    Article 

    Google Scholar 

  • Rathgeber, C. B. K., Decoux, V. & Leban, J. M. Linking intra-tree-ring wood density variations and tracheid anatomical characteristics in Douglas fir (Pseudotsuga menziesii (Mirb.) Franco). Ann. For. Sci. 63, 699–706 (2006).

    Article 

    Google Scholar 

  • Cuny, H. E., Rathgeber, C. B. K., Frank, D., Fonti, P. & Fournier, M. Kinetics of tracheid development explain conifer tree-ring structure. New Phytol. 203, 1231–1241 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Wodzicki, T. J. & Zajaczkowski, S. Methodical problems in studies on seasonal production of cambial xylem derivatives. Acta Soc. Bot. Pol. 39, 519–520 (1970).

    Google Scholar 

  • Silvestro, R. et al. Upscaling xylem phenology: Sample size matters. Ann. Bot. https://doi.org/10.1093/aob/mcac110 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Rossi, S., Girard, M. J. & Morin, H. Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production. Glob. Chang. Biol. 20, 2261–2271 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Gonsamo, A., Chen, J. M. & Ooi, Y. W. Peak season plant activity shift towards spring is reflected by increasing carbon uptake by extratropical ecosystems. Glob. Change Biol. 24, 2117–2128 (2018).

    Article 
    ADS 

    Google Scholar 

  • Dow, C. et al. Warm springs alter timing but not total growth of temperate deciduous trees. Nature 608, 552–557 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Oribe, Y., Funada, R. & Kubo, T. Relationships between cambial activity, cell differentiation and the localization of starch in storage tissues around the cambium in locally heated stems of Abies sachalinensis (Schmidt) Masters. Trees Struct. Funct. 17, 185–192 (2003).

    Article 

    Google Scholar 

  • Schrader, J. et al. Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals. Proc. Natl. Acad. Sci. USA 100, 10096–10101 (2003).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deslauriers, A., Huang, J. G., Balducci, L., Beaulieu, M. & Rossi, S. The contribution of carbon and water in modulating wood formation in black spruce saplings. Plant Physiol. 170, 2072–2084 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Silvestro, R., Brasseur, S., Klisz, M., Mencuccini, M. & Rossi, S. Bioclimatic distance and performance of apical shoot extension: Disentangling the role of growth rate and duration in ecotypic differentiation. For. Ecol. Manag. 477, 118483 (2020).

    Article 

    Google Scholar 

  • Perrin, M., Rossi, S. & Isabel, N. Synchronisms between bud and cambium phenology in black spruce: Early-flushing provenances exhibit early xylem formation. Tree Physiol. 37, 593–603 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Begum, S., Nakaba, S., Yamagishi, Y., Oribe, Y. & Funada, R. Regulation of cambial activity in relation to environmental conditions: Understanding the role of temperature in wood formation of trees. Physiol. Plant. 147, 46–54 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kagawa, A., Sugimoto, A. & Maximov, T. C. 13CO2 pulse-labelling of photoassimilates reveals carbon allocation within and between tree rings. Plant Cell Environ. 29, 1571–1584 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hansen, J. & Beck, E. The fate and path of assimilation products in the stem of 8-year-old Scots pine (Pinus sylvestris L.) trees. Trees 4, 16–21 (1990).

    Article 

    Google Scholar 

  • Fu, P. L., Grießinger, J., Gebrekirstos, A., Fan, Z. X. & Bräuning, A. Earlywood and latewood stable carbon and oxygen isotope variations in two pine species in Southwestern China during the recent decades. Front. Plant Sci. 7, 2050 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anfodillo, T. et al. Widening of xylem conduits in a conifer tree depends on the longer time of cell expansion downwards along the stem. J. Exp. Bot. 63, 837–845 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Linares, J. C., Camarero, J. J. & Carreira, J. A. Plastic responses of Abies pinsapo xylogenesis to drought and competition. Tree Physiol. 29, 1525–1536 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Rossi, S., Morin, H. & Deslauriers, A. Causes and correlations in cambium phenology: Towards an integrated framework of xylogenesis. J. Exp. Bot. 63, 2117–2126 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, X. et al. Age dependence of xylogenesis and its climatic sensitivity in Smith fir on the south-eastern Tibetan Plateau. Tree Physiol. 33, 48–56 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rathgeber, C. B. K., Rossi, S. & Bontemps, J. D. Cambial activity related to tree size in a mature silver-fir plantation. Ann. Bot. 108, 429–438 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buttò, V. et al. Comparing the cell dynamics of tree-ring formation observed in microcores and as predicted by the Vaganov-Shashkin model. Front. Plant Sci. 11, 1268 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koga, S. & Zhang, S. Y. Relationships between wood density and annual growth rate components in balsam fir (Abies balsamea). Wood Fiber Sci. 34, 146–157 (2002).

    CAS 

    Google Scholar 

  • Messier, C. et al. Functional ecology of advance regeneration in relation to light in boreal forests. Can. J. For. Res. 29, 812–823 (1999).

    Article 

    Google Scholar 

  • Pothier, D., Elie, J. G., Auger, I., Mailly, D. & Gaudreault, M. Spruce budworm-caused mortality to balsam fir and black spruce in pure and mixed conifer stands. For. Sci. 58, 24–33 (2012).

    Article 

    Google Scholar 

  • Paixao, C., Krause, C., Morin, H. & Achim, A. Wood quality of black spruce and balsam fir trees defoliated by spruce budworm: A case study in the boreal forest of Quebec, Canada. For. Ecol. Manag. 437, 201–210 (2019).

    Article 

    Google Scholar 

  • Pretzsch, H., Biber, P., Schütze, G., Kemmerer, J. & Uhl, E. Wood density reduced while wood volume growth accelerated in Central European forests since 1870. For. Ecol. Manag. 429, 589–616 (2018).

    Article 

    Google Scholar 

  • Reyer, C. et al. Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide. Ann. For. Sci. 71, 211–225 (2014).

    Article 

    Google Scholar 

  • Fang, J. et al. Evidence for environmentally enhanced forest growth. Proc. Natl. Acad. Sci. USA 111, 9527–9532 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pretzsch, H., Biber, P., Schütze, G., Uhl, E. & Rötzer, T. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat. Commun. 5, 1–10 (2014).

    Article 

    Google Scholar 

  • Gao, S. et al. An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01668-4 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Soil Classification Working Group. The Canadian System of Soil Classification. (1998).

  • Rossi, S., Anfodillo, T. & Menardi, R. Trephor: A new tool for sampling microcores from tree stems. IAWA J. 27, 89–97 (2006).

    Article 

    Google Scholar 

  • Deslauriers, A., Morin, H. & Begin, Y. Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest (Canada). Can. J. For. Res. 33, 190–200 (2003).

    Article 

    Google Scholar 

  • Rossi, S., Deslauriers, A. & Anfodillo, T. Assessment of cambial activity and xylogenesis by microsampling tree species: An example at the Alpine timberline. IAWA J. 27, 383–394 (2006).

    Article 

    Google Scholar 

  • Filion, L. & Cournoyer, L. Variation in wood structure of eastern larch defoliated by the larch sawfly in subarctic Quebec, Canada. Can. J. For. Res. 25, 1263–1268 (1995).

    Article 

    Google Scholar 

  • R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. (2015).


  • Source: Ecology - nature.com

    Engaging enterprises with the climate crisis

    Abiotic selection of microbial genome size in the global ocean