Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).
Google Scholar
Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, causes, and consequences of anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 47, 333–358 (2016).
Google Scholar
Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509 (2010).
Google Scholar
Ceballos, G. et al. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).
Google Scholar
Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signalled by vertebrate population losses and declines. PNAS 114, E6089–E6096 (2017).
Google Scholar
Almond, R. E. A. et al. (eds) Living Planet Report 2020—Bending the Curve of Biodiversity Loss (WWF, 2020).
Murali, G., de Oliveira Caetano, G. H., Barki, G., Meiri, S. & Roll, U. Emphasizing declining populations in the Living Planet Report. Nature 601, E20–E24 (2022).
Google Scholar
Pianka, E. R., Vitt, L. J., Pelegrin, N., Fitzgerald, D. B. & Winemiller, K. O. Toward a periodic table of niches, for exploring the lizard niche hypervolume. Am. Nat. 190, 601–616 (2017).
Google Scholar
Cox, D. T. C., Gardner, A. S. & Gaston, K. J. Diel niche variation in mammals associated with expanded trait space. Nat. Commun. 12, 1753 (2021).
Google Scholar
Cox, D. T. C., Baker, D. J., Gardner, A. S. & Gaston, K. J. Global variation in unique and redundant mammal functional diversity across the daily cycle. J. Biogeogr. In Press
Chichorro, F., Juslén, A. & Cardoso, P. A review of the relation between species traits and extinction risk. Biol. Conserv. 237, 220–229 (2019).
Google Scholar
Cox, D. T. C., Gardner, A. S. & Gaston, K. J. Global and regional erosion of mammalian functional diversity across the diel cycle. Sci. Adv. 8, adb6008 (2022).
Google Scholar
Levy, O., Dayan, T., Porter, W. P. & Kronfeld-Schor, N. Time and ecological resilience: Can diurnal animals compensate for climate change by shifting to nocturnal activity?. Ecol. Monogr. 89, e01334 (2019).
Google Scholar
Bonebrake, T. C., Rezende, E. L. & Bozinovic, F. Climate change and thermoregulatory consequences of activity time in mammals. Am. Nat. 196, 45–56 (2020).
Google Scholar
Cox, D. T. C., Maclean, I. M. D., Gardner, A. S. & Gaston, K. J. Global variation in diurnal asymmetry in temperature, cloud cover, specific humidity and precipitation and its association with leaf area index. Glob. Change Biol. 26, 7099–7111 (2020).
Google Scholar
Fritts, T. H. & Rodda, G. H. The role of introduced species in the degradation of island ecosystems: A case history of Guam. Annu. Rev. Ecol. Evol. Syst. 29, 113–140 (1998).
Google Scholar
Su, J.-Q., Han, X. & Chen, B.-M. Do day and night warming exert different effects on growth and competitive interaction between invasive and native plants?. Biol. Invasions 23, 157–166 (2021).
Google Scholar
Peres, C. A. Synergistic effects of subsistence hunting and habitat fragmentation on Amazonian forest vertebrates. Conserv. Biol. 15, 1490–1505 (2001).
Google Scholar
Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).
Google Scholar
Brodie, J. F. Synergistic effects of climate change and agricultural land use on mammals. Front. Ecol. Environ. 14, 20–26 (2016).
Google Scholar
Brodie, J. F., Williams, S. & Garner, B. The decline of mammal functional and evolutionary diversity worldwide. PNAS https://doi.org/10.1073/pnas.1921849118 (2021).
Google Scholar
IUCN. The IUCN Red List of threatened species. Version 2021-3. https://www.iucnredlist.org. Downloaded on [21stt March 2022] (2021).
Faurby, S. et al. PHYLACINE 1.2.1: The phylogenetic atlas of mammal macroecology. Ecology. 99, 2626–2626 (2018).
Google Scholar
Ripple, W. J. et al. Bushmeat hunting and extinction risk to the world’s mammals. R. Soc. Open Sci. 3, 160498 (2016).
Google Scholar
Ripple, W. J. et al. Are we eating the world’s megafauna to extinction? Conserv. Lett. 12, e12627 (2019).
Google Scholar
Nasi, R., Taber, A. & Van Vliet, N. Empty forests, empty stomachs? Bushmeat and livelihoods in the Congo and Amazon Basins. Int. For. Rev. 13, 355–368 (2011).
Woinarski, J. C. Z., Burbidge, A. A. & Harrison, P. L. Ongoing unravelling of a continental fauna: decline and extinction of Australian mammals since European settlement. PNAS 112, 4531–4540 (2015).
Google Scholar
Welbergen, J. A., Klose, S. M., Markus, N. & Eby, P. Climate change and the effects of the temperature extremes on Australian flying-foxes. Proc. R. Soc. B. 275, 419–425 (2008).
Google Scholar
Ramesh, T., Kalle, R., Sankar, K. & Qureshi, Q. Role of body size in activity budget of mammals in the Western ghats of India. J. Trop. Biol. 31, 315–323 (2015).
Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).
Google Scholar
Bennie, J. J., Duffy, J. P., Inger, R. & Gaston, K. J. Biogeography of time partitioning in mammals. PNAS 111, 13727–13732 (2014).
Google Scholar
Forbes, B. C. et al. Sea ice, rain-on-snow and tundra reindeer nomadism in Arctic Russia. Biol. Lett. 12, 20160466 (2016).
Google Scholar
Safronov, V. M. Climate change and mammals of Yakutia. Biol. Bull Russ. Acad. Sci. 43, 1256–1270 (2016).
Google Scholar
Galán-Acedo, C. et al. The conservation value of human-modified landscapes for the world’s primates. Nat. Commun. 10, 152 (2019).
Google Scholar
Gaston, K. J. Nighttime ecology: the “nocturnal problem” revisited. Am. Nat. 193, 481–502 (2019).
Google Scholar
Mittermeier, R., Rylands, A., Lacher, T. & Wilson, D. Handbook of the Mammals of the World Vol. 1–3 & 5–9 (Lynx Edicions, Cham, 2001-2019).
Ives, A. R. & Garland, T. Jr. Phylogenetic logistic regression for binary dependent variables. Syst. Biol. 59, 9–26 (2010).
Google Scholar
Ho, T. & Ané, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).
Google Scholar
Penone, C. et al. Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol. Evol. 5, 961–970 (2014).
Google Scholar
Brodzik, M. J., Billingsley, B., Haran, T., Raup, B. & Savoie, M. H. EASE-Grid 2.0: Incremental but significant improvements for earth-gridded data sets. ISPRS Int. J. Geo-Inf. 1, 32–45 (2012).
Google Scholar
Source: Ecology - nature.com