Roux, R., Gosselin, M., Desrosiers, G. & Nozais, C. Effects of reduced UV radiation on a microbenthic community during a microcosm experiment. Mar. Ecol. Prog. Ser. 225, 29–43. https://doi.org/10.3354/meps225029 (2002).
Google Scholar
Häder, D. P., Helbling, E. W., Williamson, C. E. & Worrest, R. C. Effects of UV radiation on aquatic ecosystems and interactions with climate change. Photochem. Photobiol. Sci. 10, 242–260. https://doi.org/10.1039/C0PP90036B (2011).
Google Scholar
Schmidt, É. C. et al. Response of the agarophyte Gelidium floridanum after in vitro exposure to ultraviolet radiation B: changes in ultrastructure, pigments, and antioxidant systems. J. Appl. Phycol. 24, 1341–1352. https://doi.org/10.1007/s10811-012-9786-4 (2012).
Google Scholar
Zhu, L. et al. Physiological responses of macroalga Gracilaria lemaneiformis (Rhodophyta) to UV-B radiation exposure. Chin. J. Oceanol. Limnol. 33, 389–399. https://doi.org/10.1007/s00343-015-4073-2 (2015).
Google Scholar
Liu, Y. N., Ao, M., Li, B. & Guan, Y. X. Effect of ultraviolet- B( UV-B) radiation on plant growth and development and its application value. Soils and Crops 9, 191–202. https://doi.org/10.11689/j.issn.2095-2961.2020.02.011 (2020).
Google Scholar
Chen, Y. Y., Xu, X. L., Shen, X. Y. & Zhang, Z. G. Advances of Research on Effects of Enhanced UV-B on Algae. JiangXi Science 23, 180–184. https://doi.org/10.13990/j.issn1001-3679.2005.02.025 (2005).
Google Scholar
Aguilera, J., Bischof, K., Karsten, U., Hanelt, D. & Wiencke, C. Seasonal variation in ecophysiological patterns in macroalgae from an Arctic fjord. II. Pigment accumulation and biochemical defence systems against high light stress. Mar. Biol. 140, 1087–1095. https://doi.org/10.1007/s00227-002-0792-y (2002).
Google Scholar
Xu, F. H., Zhang, P. Y., Yu, D. S. & Li, Y. The effect of enhanced UV-B radiation to the growth of Ulva Pertusa Kjell man and Platy monas Hel gol andi ca Kylin var. Tsi ngt aoensis. J. Qingdao Univ. (E & T) 21, 49–53. https://doi.org/10.3969/j.issn.1006-9798.2006.02.010 (2006).
Google Scholar
Guan, W. C., Chen, H., Wang, T., Chen, S. & Xu, J. Effect of the solar ultraviolet radiation on the growth and fluorescence parameters of Sargassum horner. J. Fish. China 40, 83–91. https://doi.org/10.11964/jfc.20150109683 (2016).
Google Scholar
Sun, Y. et al. Physiological responses and metabonomics analysis of male and female Sargassum thunbergii macroalgae exposed to ultraviolet-B stress. Front. Plant Sci. https://doi.org/10.3389/fpls.2022.778602 (2022).
Google Scholar
Sun, Y. et al. The differing responses of central carbon cycle metabolism in male and female Sargassum thunbergii to ultraviolet-B radiation. Front. Plant Sci. 13, 10. https://doi.org/10.3389/fpls.2022.904943 (2022).
Google Scholar
Lu, P. et al. Gender differences response characteristics of Sargassum thunbergii in reactive oxygen species scavenging system to enhanced UV-B radiation. Period. Ocean Univ. China 52, 5259. https://doi.org/10.16441/j.cnki.hdxb.20210224 (2022).
Google Scholar
Ji, Y., Xu, Z., Zou, D. & Gao, K. Ecophysiological responses of marine macroalgae to climate change factors. J. Appl. Phycol. 28, 2953–2967. https://doi.org/10.1007/s10811-016-0840-5 (2016).
Google Scholar
Chen, S. W. & Wu, B. X. Algal responses to enhanced UV-B and its mechanism on molecular level. J. Jinan Univ. (Nat. Sci.) 21, 88–94. https://doi.org/10.3969/j.issn.1000-9965.2000.05.017 (2000).
Google Scholar
Pescheck, F., Lohbeck, K. T., Roleda, M. Y. & Bilger, W. UV-B -induced DNA and photosystem II damage in two intertidal green macroalgae: distinct survival strategies in UV-screening and non-screening Chlorophyta. J. Photochem. Photobiol. B 132, 85–93. https://doi.org/10.1016/j.jphotobiol.2014.02.006 (2014).
Google Scholar
Dong, K. Physiological and biochemical responses of Ulva pertusa and Sargassum thunbergii to UV-B radiation Master thesis, Ocean University of China (2008).
Selvarajan, R., Sibanda, T., Venkatachalam, S., Ogola, H. & Msagati, T. A. Distribution, interaction and functional profiles of epiphytic bacterial communities from the rocky intertidal seaweeds, South Africa. Sci. Rep. 9, 19835. https://doi.org/10.1038/s41598-019-56269-2 (2019).
Google Scholar
Zhang, Z. H., Tang, L. L. & Zhang, Y. Y. Algae-bacteria interactions and their ecological functions in the ocean. Microbiol. China 45, 2043–2053. https://doi.org/10.13344/j.microbiol.china.180178 (2018).
Google Scholar
Xuan, L. et al. Effects of UV-B radiation on quantity of epiphytic bacteria, endophytic bacteria and physiological mechanism of Erigeron breviscapus. Ecol. Environ. Sci. 18, 2211–2215. https://doi.org/10.16258/j.cnki.1674-5906.2009.06.055 (2009).
Google Scholar
Zheng, H. Effects of UV-B radiation on the endophytic bacteria in plants of Qinghai-Tibet plateau Master thesis, Lanzhou University (2009).
Dobretsov, S., Véliz, K., Romero, M. S., Tala, F. & Thiel, M. Impact of UV radiation on the red seaweed Gelidium lingulatum and its associated bacteria. Eur. J. Phycol. 56, 129–141. https://doi.org/10.1080/09670262.2020.1775309 (2021).
Google Scholar
Serebryakova, A., Aires, T., Viard, F., Serrao, E. & Engelen, A. Summer shifts of bacterial communities associated with the invasive brown seaweed Sargassum muticum are location and tissue dependent. PLoS ONE 13, e0206734. https://doi.org/10.1371/journal.pone.0206734 (2018).
Google Scholar
Florez, J. Z., Carolina, C., Hengst, M. B. & Buschmann, A. H. A functional perspective analysis of macroalgae and epiphytic bacterial community interaction. Front. Microbiol. 8, 2561. https://doi.org/10.3389/fmicb.2017.02561 (2017).
Google Scholar
Xu, X. et al. Different growth sensitivity to enhanced UV-B radiation between male and female Populus cathayana. Tree Physiol. 30, 1489–1498. https://doi.org/10.1093/treephys/tpq094 (2010).
Google Scholar
Chen, M. et al. Various responses of antioxidant enzyme system and photosynthetic pigments in male and female mulberry (Morus alba L.) seedlings to UV-B radiation. J. China West Normal Univ. (Nat. Sci.) 35, 327–332. https://doi.org/10.16246/j.issn.1673-5072.2014.04.010 (2014).
Google Scholar
Norul, S. et al. Accumulation of phenolics and growth of dioecious Populus tremula (L.) seedlings over three growing seasons under elevated temperature and UV-B radiation. Plant Physiol. Biochem. 165, 114–122. https://doi.org/10.1016/j.plaphy.2021.05.012 (2021).
Google Scholar
Sun, Y. et al. Development and utilization status of Sargassum thunbergii. Fish. Sci. Technol. Inf. 45, 343–346. https://doi.org/10.16446/j.cnki.1001-1994.2018.06.011 (2018).
Google Scholar
Amaral-Zettler, L. A. et al. Comparative mitochondrial and chloroplast genomics of a genetically distinct form of Sargassum contributing to recent “Golden Tides” in the Western Atlantic. Ecol. Evol. 7, 516–525. https://doi.org/10.1002/ece3.2630 (2016).
Google Scholar
Wu, H., Liu, H., Yang, D. & Li, M. Research present situation of Sargassum thunbergii. Terr. Nat. Resour. Study 1, 95–96. https://doi.org/10.16202/j.cnki.tnrs.2010.01.009 (2010).
Google Scholar
Njage, P. et al. Quantitative microbial risk assessment based on whole genome sequencing data: case of Listeria monocytogenes. Microorganisms 8, 1772. https://doi.org/10.3390/microorganisms8111772 (2020).
Google Scholar
McHugh, A. J. et al. Tracking the dairy microbiota from farm bulk tank to skimmed milk powder. mSystems 5, e00226-00220. https://doi.org/10.1128/mSystems.00226-20 (2020).
Google Scholar
Sun, Y. Polyphasic Taxonomy of Fluviibacterium aquatile SM1902T and Effect of starvation treatment on the variation of bacterial community in the open ocean surface seawater Master thesis, Shandong University, (2020).
Gao, X. et al. Survival, virulent characteristics, and transcriptomic analyses of the pathogenic Vibrio anguillarum under starvation stress. Front. Cell. Infect. Microbiol. 16, 389. https://doi.org/10.3389/fcimb.2018.00389 (2018).
Google Scholar
Gao, Y. Study on denitrification performance of marine anammox bacteria under UV and electron mediators Master thesis, Qingdao University, (2020).
Fernández Zenoff, V., Siñeriz, F. & Farías, M. E. Diverse responses to UV-B radiation and repair mechanisms of bacteria isolated from high-altitude aquatic environments. Appl. Environ. Microbiol. 72, 7857–7863. https://doi.org/10.1128/aem.01333-06 (2006).
Google Scholar
Kadivar, H. & Stapleton, A. E. Ultraviolet radiation alters maize phyllosphere bacterial diversity. Microb. Ecol. 45, 353–361. https://doi.org/10.1007/s00248-002-1065-5 (2003).
Google Scholar
Lynch, M. D. J. & Neufeld, J. D. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13, 217–229. https://doi.org/10.1038/nrmicro3400 (2015).
Google Scholar
Reintjes, G., Arnosti, C., Fuchs, B. & Amann, R. Selfish, sharing and scavenging bacteria in the Atlantic Ocean: A biogeographical study of bacterial substrate utilisation. ISME J. 13, 1119–1132. https://doi.org/10.1038/s41396-018-0326-3 (2019).
Google Scholar
Roth Rosenberg, D. et al. Prochlorococcus cells rely on microbial interactions rather than on chlorotic resting stages to survive long-term nutrient starvation. MBio 11, e01846-01820. https://doi.org/10.1128/mBio.01846-20 (2020).
Google Scholar
Berg, K. A. et al. High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. ISME J. 3, 314–325. https://doi.org/10.1038/ismej.2008.110 (2009).
Google Scholar
Pootakham, W. et al. High resolution profiling of coral-associated bacterial communities using full-length 16S rRNA sequence data from PacBio SMRT sequencing system. Sci. Rep. 7, 2774. https://doi.org/10.1038/s41598-017-03139-4 (2017).
Google Scholar
Soto, C. Y. et al. IS6110 mediates increased transcription of the phoP virulence gene in a multidrug-resistant clinical isolate responsible for tuberculosis outbreaks. J. Clin. Microbiol. 42, 212–219. https://doi.org/10.1128/jcm.42.1.212-219.2004 (2004).
Google Scholar
Di Cesare, A. et al. Diverse distribution of Toxin-Antitoxin II systems in Salmonella enterica serovars. Sci. Rep. 6, 28759. https://doi.org/10.1038/srep28759 (2016).
Google Scholar
Das, S., Saha, S. K., De, A., Das, D. & Khuda-Bukhsh, A. R. Potential of the homeopathic remedy, Arnica Montana 30C, to reduce DNA damage in Escherichia coli exposed to ultraviolet irradiation through up-regulation of nucleotide excision repair genes. Zhong Xi Yi Jie He Xue Bao 10, 337–346. https://doi.org/10.3736/jcim20120314 (2012).
Google Scholar
Jallouli, W., Sellami, S., Sellami, M. & Tounsi, S. Efficacy of olive mill wastewater for protecting Bacillus thuringiensis formulation from UV radiations. Acta Trop. 140, 19–25. https://doi.org/10.1016/j.actatropica.2014.07.016 (2014).
Google Scholar
Huang, L. et al. Effects of UV-B radiation on the expression of four pathogenic genes in the infection stage of Magnaporthe grisea. J. Agro-Environ. Sci. 38, 494–501. https://doi.org/10.11654/jaes.2018-0625 (2019).
Google Scholar
He, K., Marden, J. N., Quardokus, E. M. & Bauer, C. E. Phosphate flow between hybrid histidine kinases CheA3 and CheS3 controls Rhodospirillum centenum cyst formation. PLoS Genet. 9, e1004002. https://doi.org/10.1371/journal.pgen.1004002 (2013).
Google Scholar
Deutscher, J., Francke, C. & Postma, P. W. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev. 70, 939–1031. https://doi.org/10.1128/mmbr.00024-06 (2006).
Google Scholar
Li, L., Zhao, Y., Zhou, B., Dong, K. S. & Tang, X. X. Effect of UV-B irradiation on the activity and isoforms of antioxidant enzymes in the Brown Alga Sargassum thunbergii(Mert.) O.Kuntze. Period. Ocean Univ. China 39, 1246–1250. https://doi.org/10.3969/j.issn.1672-5174.2009.06.012 (2009).
Google Scholar
Li, L., Tang, T., Hai, M., Chen, J. & Zhou, P. Response and molecular mechanisms of plants to enhanced UV-B radiation. Chin. Agric. Sci. Bull. 31, 159–163. https://doi.org/10.11924/j.issn.1000-6850.2014-1871 (2015).
Google Scholar
Zhang, Y. et al. Dietary corn-resistant starch suppresses broiler abdominal fat deposition associated with the reduced cecal Firmicutes. Poult. Sci. 99, 5827–5837. https://doi.org/10.1016/j.psj.2020.07.042 (2020).
Google Scholar
Pilla, R. et al. Effects of metronidazole on the fecal microbiome and metabolome in healthy dogs. J. Vet. Intern. Med. 34, 1853–1866. https://doi.org/10.1111/jvim.15871 (2020).
Google Scholar
Hong, S. Cloning and identification of a novel CDF family transporter gene cdffT from Planococcus sp. NEAU-ST10–9 Master thesis, Northeast Forestry University (2014).
Egan, S., Thomas, T. & Kjelleberg, S. Unlocking the diversity and biotechnological potential of marine surface associated microbial communities. Curr. Opin. Microbiol. 11, 219–225. https://doi.org/10.1016/j.mib.2008.04.001 (2008).
Google Scholar
Wang, J. et al. Sex plays a role in the construction of epiphytic bacterial communities on the algal bodies and receptacles of Sargassum thunbergii. Front. Microbiol. 13, 935222. https://doi.org/10.3389/fmicb.2022.935222 (2022).
Google Scholar
Wang, J. et al. Diversity of epiphytic bacterial communities on male and female Sargassum thunbergii. AMB Express 12, 97. https://doi.org/10.1186/s13568-022-01439-1 (2022).
Google Scholar
Tang, X. X. et al. Simulated intertidal UV-B radiation enhancement large-sized seaweed culture irradiation system, has salinity detector and temperature detector, culturing tank provided with fluorescent lamp tube and adjustable bracket. China patent CN208047639-U (2018).
Lu, P. et al. Gender differences response characteristics of Sargassum thunbergii in reactive oxygen species scavenging system to enhanced UV-B radiation. Period. Ocean Univ. China 52, 52–59. https://doi.org/10.16441/j.cnki.hdxb.20210224 (2022).
Google Scholar
Ren, G. et al. Response of soil, leaf endosphere and phyllosphere bacterial communities to elevated CO2 and soil temperature in a rice paddy. Plant Soil 392, 27–44. https://doi.org/10.1007/s11104-015-2503-8 (2015).
Google Scholar
Mathai, P. et al. Spatial and temporal characterization of epiphytic microbial communities associated with Eurasian Watermilfoil: A highly invasive macrophyte in North America. FEMS Microbiol. Ecol. 94, 12–21. https://doi.org/10.1093/femsec/fiy178 (2018).
Google Scholar
Czekalski, N., Berthold, T., Caucci, S., Egli, A. & Bürgmann, H. Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into lake Geneva, Switzerland. Front. Microbiol. 3, 106–106. https://doi.org/10.3389/fmicb.2012.00106 (2012).
Google Scholar
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.1038/s41587-019-0252-6 (2019).
Google Scholar
Janssen, S. et al. Phylogenetic placement of exact amplicon sequences improves associations with clinical information. MSystems 3, e00021-e118. https://doi.org/10.1128/mSystems.00021-18 (2018).
Google Scholar
Li, S. et al. Exploring untapped potential of Streptomyces spp. in Gurbantunggut Desert by use of highly selective culture strategy. Sci. Total Environ. 790, 148235. https://doi.org/10.1016/j.scitotenv.2021.148235 (2021).
Google Scholar
Qin, W. et al. Gut microbiota plasticity influences the adaptability of wild and domestic animals in co-inhabited areas. Front. Microbiol. 11, 125. https://doi.org/10.3389/fmicb.2020.00125 (2020).
Google Scholar
Douglas, G. M., Beiko, R. G. & Langille, M. G. I. Predicting the functional potential of the microbiome from marker genes using PICRUSt. Methods Mol. Biol. 169–177, 2018. https://doi.org/10.1007/978-1-4939-8728-311 (1849).
Google Scholar
Kanehisa, M. et al. KEGG: Ntegrating viruses and cellular organisms. Nucleic Acids Res. 49, D545–D551. https://doi.org/10.1093/nar/gkaa970 (2021).
Google Scholar
Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951. https://doi.org/10.1002/pro.3715 (2019).
Google Scholar
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).
Google Scholar
Douglas, G. M. et al. PICRUSt2: An improved and extensible approach for metagenome inference. BioRxiv 7, 672295. https://doi.org/10.1101/672295 (2019).
Google Scholar
Source: Ecology - nature.com