in

Effects of UV-B radiation on epiphytic bacterial communities on male and female Sargassum thunbergii

  • Roux, R., Gosselin, M., Desrosiers, G. & Nozais, C. Effects of reduced UV radiation on a microbenthic community during a microcosm experiment. Mar. Ecol. Prog. Ser. 225, 29–43. https://doi.org/10.3354/meps225029 (2002).

    Article 
    ADS 

    Google Scholar 

  • Häder, D. P., Helbling, E. W., Williamson, C. E. & Worrest, R. C. Effects of UV radiation on aquatic ecosystems and interactions with climate change. Photochem. Photobiol. Sci. 10, 242–260. https://doi.org/10.1039/C0PP90036B (2011).

    Article 
    PubMed 

    Google Scholar 

  • Schmidt, É. C. et al. Response of the agarophyte Gelidium floridanum after in vitro exposure to ultraviolet radiation B: changes in ultrastructure, pigments, and antioxidant systems. J. Appl. Phycol. 24, 1341–1352. https://doi.org/10.1007/s10811-012-9786-4 (2012).

    Article 
    CAS 

    Google Scholar 

  • Zhu, L. et al. Physiological responses of macroalga Gracilaria lemaneiformis (Rhodophyta) to UV-B radiation exposure. Chin. J. Oceanol. Limnol. 33, 389–399. https://doi.org/10.1007/s00343-015-4073-2 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Liu, Y. N., Ao, M., Li, B. & Guan, Y. X. Effect of ultraviolet- B( UV-B) radiation on plant growth and development and its application value. Soils and Crops 9, 191–202. https://doi.org/10.11689/j.issn.2095-2961.2020.02.011 (2020).

    Article 

    Google Scholar 

  • Chen, Y. Y., Xu, X. L., Shen, X. Y. & Zhang, Z. G. Advances of Research on Effects of Enhanced UV-B on Algae. JiangXi Science 23, 180–184. https://doi.org/10.13990/j.issn1001-3679.2005.02.025 (2005).

    Article 

    Google Scholar 

  • Aguilera, J., Bischof, K., Karsten, U., Hanelt, D. & Wiencke, C. Seasonal variation in ecophysiological patterns in macroalgae from an Arctic fjord. II. Pigment accumulation and biochemical defence systems against high light stress. Mar. Biol. 140, 1087–1095. https://doi.org/10.1007/s00227-002-0792-y (2002).

    Article 
    CAS 

    Google Scholar 

  • Xu, F. H., Zhang, P. Y., Yu, D. S. & Li, Y. The effect of enhanced UV-B radiation to the growth of Ulva Pertusa Kjell man and Platy monas Hel gol andi ca Kylin var. Tsi ngt aoensis. J. Qingdao Univ. (E & T) 21, 49–53. https://doi.org/10.3969/j.issn.1006-9798.2006.02.010 (2006).

    Article 
    CAS 

    Google Scholar 

  • Guan, W. C., Chen, H., Wang, T., Chen, S. & Xu, J. Effect of the solar ultraviolet radiation on the growth and fluorescence parameters of Sargassum horner. J. Fish. China 40, 83–91. https://doi.org/10.11964/jfc.20150109683 (2016).

    Article 

    Google Scholar 

  • Sun, Y. et al. Physiological responses and metabonomics analysis of male and female Sargassum thunbergii macroalgae exposed to ultraviolet-B stress. Front. Plant Sci. https://doi.org/10.3389/fpls.2022.778602 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, Y. et al. The differing responses of central carbon cycle metabolism in male and female Sargassum thunbergii to ultraviolet-B radiation. Front. Plant Sci. 13, 10. https://doi.org/10.3389/fpls.2022.904943 (2022).

    Article 

    Google Scholar 

  • Lu, P. et al. Gender differences response characteristics of Sargassum thunbergii in reactive oxygen species scavenging system to enhanced UV-B radiation. Period. Ocean Univ. China 52, 5259. https://doi.org/10.16441/j.cnki.hdxb.20210224 (2022).

    Article 
    ADS 

    Google Scholar 

  • Ji, Y., Xu, Z., Zou, D. & Gao, K. Ecophysiological responses of marine macroalgae to climate change factors. J. Appl. Phycol. 28, 2953–2967. https://doi.org/10.1007/s10811-016-0840-5 (2016).

    Article 
    CAS 

    Google Scholar 

  • Chen, S. W. & Wu, B. X. Algal responses to enhanced UV-B and its mechanism on molecular level. J. Jinan Univ. (Nat. Sci.) 21, 88–94. https://doi.org/10.3969/j.issn.1000-9965.2000.05.017 (2000).

    Article 
    CAS 

    Google Scholar 

  • Pescheck, F., Lohbeck, K. T., Roleda, M. Y. & Bilger, W. UV-B -induced DNA and photosystem II damage in two intertidal green macroalgae: distinct survival strategies in UV-screening and non-screening Chlorophyta. J. Photochem. Photobiol. B 132, 85–93. https://doi.org/10.1016/j.jphotobiol.2014.02.006 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dong, K. Physiological and biochemical responses of Ulva pertusa and Sargassum thunbergii to UV-B radiation Master thesis, Ocean University of China (2008).

  • Selvarajan, R., Sibanda, T., Venkatachalam, S., Ogola, H. & Msagati, T. A. Distribution, interaction and functional profiles of epiphytic bacterial communities from the rocky intertidal seaweeds, South Africa. Sci. Rep. 9, 19835. https://doi.org/10.1038/s41598-019-56269-2 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Z. H., Tang, L. L. & Zhang, Y. Y. Algae-bacteria interactions and their ecological functions in the ocean. Microbiol. China 45, 2043–2053. https://doi.org/10.13344/j.microbiol.china.180178 (2018).

    Article 

    Google Scholar 

  • Xuan, L. et al. Effects of UV-B radiation on quantity of epiphytic bacteria, endophytic bacteria and physiological mechanism of Erigeron breviscapus. Ecol. Environ. Sci. 18, 2211–2215. https://doi.org/10.16258/j.cnki.1674-5906.2009.06.055 (2009).

    Article 

    Google Scholar 

  • Zheng, H. Effects of UV-B radiation on the endophytic bacteria in plants of Qinghai-Tibet plateau Master thesis, Lanzhou University (2009).

  • Dobretsov, S., Véliz, K., Romero, M. S., Tala, F. & Thiel, M. Impact of UV radiation on the red seaweed Gelidium lingulatum and its associated bacteria. Eur. J. Phycol. 56, 129–141. https://doi.org/10.1080/09670262.2020.1775309 (2021).

    Article 
    CAS 

    Google Scholar 

  • Serebryakova, A., Aires, T., Viard, F., Serrao, E. & Engelen, A. Summer shifts of bacterial communities associated with the invasive brown seaweed Sargassum muticum are location and tissue dependent. PLoS ONE 13, e0206734. https://doi.org/10.1371/journal.pone.0206734 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Florez, J. Z., Carolina, C., Hengst, M. B. & Buschmann, A. H. A functional perspective analysis of macroalgae and epiphytic bacterial community interaction. Front. Microbiol. 8, 2561. https://doi.org/10.3389/fmicb.2017.02561 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, X. et al. Different growth sensitivity to enhanced UV-B radiation between male and female Populus cathayana. Tree Physiol. 30, 1489–1498. https://doi.org/10.1093/treephys/tpq094 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, M. et al. Various responses of antioxidant enzyme system and photosynthetic pigments in male and female mulberry (Morus alba L.) seedlings to UV-B radiation. J. China West Normal Univ. (Nat. Sci.) 35, 327–332. https://doi.org/10.16246/j.issn.1673-5072.2014.04.010 (2014).

    Article 

    Google Scholar 

  • Norul, S. et al. Accumulation of phenolics and growth of dioecious Populus tremula (L.) seedlings over three growing seasons under elevated temperature and UV-B radiation. Plant Physiol. Biochem. 165, 114–122. https://doi.org/10.1016/j.plaphy.2021.05.012 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sun, Y. et al. Development and utilization status of Sargassum thunbergii. Fish. Sci. Technol. Inf. 45, 343–346. https://doi.org/10.16446/j.cnki.1001-1994.2018.06.011 (2018).

    Article 

    Google Scholar 

  • Amaral-Zettler, L. A. et al. Comparative mitochondrial and chloroplast genomics of a genetically distinct form of Sargassum contributing to recent “Golden Tides” in the Western Atlantic. Ecol. Evol. 7, 516–525. https://doi.org/10.1002/ece3.2630 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, H., Liu, H., Yang, D. & Li, M. Research present situation of Sargassum thunbergii. Terr. Nat. Resour. Study 1, 95–96. https://doi.org/10.16202/j.cnki.tnrs.2010.01.009 (2010).

    Article 

    Google Scholar 

  • Njage, P. et al. Quantitative microbial risk assessment based on whole genome sequencing data: case of Listeria monocytogenes. Microorganisms 8, 1772. https://doi.org/10.3390/microorganisms8111772 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McHugh, A. J. et al. Tracking the dairy microbiota from farm bulk tank to skimmed milk powder. mSystems 5, e00226-00220. https://doi.org/10.1128/mSystems.00226-20 (2020).

    Article 

    Google Scholar 

  • Sun, Y. Polyphasic Taxonomy of Fluviibacterium aquatile SM1902T and Effect of starvation treatment on the variation of bacterial community in the open ocean surface seawater Master thesis, Shandong University, (2020).

  • Gao, X. et al. Survival, virulent characteristics, and transcriptomic analyses of the pathogenic Vibrio anguillarum under starvation stress. Front. Cell. Infect. Microbiol. 16, 389. https://doi.org/10.3389/fcimb.2018.00389 (2018).

    Article 
    CAS 

    Google Scholar 

  • Gao, Y. Study on denitrification performance of marine anammox bacteria under UV and electron mediators Master thesis, Qingdao University, (2020).

  • Fernández Zenoff, V., Siñeriz, F. & Farías, M. E. Diverse responses to UV-B radiation and repair mechanisms of bacteria isolated from high-altitude aquatic environments. Appl. Environ. Microbiol. 72, 7857–7863. https://doi.org/10.1128/aem.01333-06 (2006).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kadivar, H. & Stapleton, A. E. Ultraviolet radiation alters maize phyllosphere bacterial diversity. Microb. Ecol. 45, 353–361. https://doi.org/10.1007/s00248-002-1065-5 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lynch, M. D. J. & Neufeld, J. D. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13, 217–229. https://doi.org/10.1038/nrmicro3400 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reintjes, G., Arnosti, C., Fuchs, B. & Amann, R. Selfish, sharing and scavenging bacteria in the Atlantic Ocean: A biogeographical study of bacterial substrate utilisation. ISME J. 13, 1119–1132. https://doi.org/10.1038/s41396-018-0326-3 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roth Rosenberg, D. et al. Prochlorococcus cells rely on microbial interactions rather than on chlorotic resting stages to survive long-term nutrient starvation. MBio 11, e01846-01820. https://doi.org/10.1128/mBio.01846-20 (2020).

    Article 

    Google Scholar 

  • Berg, K. A. et al. High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. ISME J. 3, 314–325. https://doi.org/10.1038/ismej.2008.110 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pootakham, W. et al. High resolution profiling of coral-associated bacterial communities using full-length 16S rRNA sequence data from PacBio SMRT sequencing system. Sci. Rep. 7, 2774. https://doi.org/10.1038/s41598-017-03139-4 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Soto, C. Y. et al. IS6110 mediates increased transcription of the phoP virulence gene in a multidrug-resistant clinical isolate responsible for tuberculosis outbreaks. J. Clin. Microbiol. 42, 212–219. https://doi.org/10.1128/jcm.42.1.212-219.2004 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Di Cesare, A. et al. Diverse distribution of Toxin-Antitoxin II systems in Salmonella enterica serovars. Sci. Rep. 6, 28759. https://doi.org/10.1038/srep28759 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Das, S., Saha, S. K., De, A., Das, D. & Khuda-Bukhsh, A. R. Potential of the homeopathic remedy, Arnica Montana 30C, to reduce DNA damage in Escherichia coli exposed to ultraviolet irradiation through up-regulation of nucleotide excision repair genes. Zhong Xi Yi Jie He Xue Bao 10, 337–346. https://doi.org/10.3736/jcim20120314 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Jallouli, W., Sellami, S., Sellami, M. & Tounsi, S. Efficacy of olive mill wastewater for protecting Bacillus thuringiensis formulation from UV radiations. Acta Trop. 140, 19–25. https://doi.org/10.1016/j.actatropica.2014.07.016 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, L. et al. Effects of UV-B radiation on the expression of four pathogenic genes in the infection stage of Magnaporthe grisea. J. Agro-Environ. Sci. 38, 494–501. https://doi.org/10.11654/jaes.2018-0625 (2019).

    Article 

    Google Scholar 

  • He, K., Marden, J. N., Quardokus, E. M. & Bauer, C. E. Phosphate flow between hybrid histidine kinases CheA3 and CheS3 controls Rhodospirillum centenum cyst formation. PLoS Genet. 9, e1004002. https://doi.org/10.1371/journal.pgen.1004002 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deutscher, J., Francke, C. & Postma, P. W. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev. 70, 939–1031. https://doi.org/10.1128/mmbr.00024-06 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, L., Zhao, Y., Zhou, B., Dong, K. S. & Tang, X. X. Effect of UV-B irradiation on the activity and isoforms of antioxidant enzymes in the Brown Alga Sargassum thunbergii(Mert.) O.Kuntze. Period. Ocean Univ. China 39, 1246–1250. https://doi.org/10.3969/j.issn.1672-5174.2009.06.012 (2009).

    Article 
    CAS 

    Google Scholar 

  • Li, L., Tang, T., Hai, M., Chen, J. & Zhou, P. Response and molecular mechanisms of plants to enhanced UV-B radiation. Chin. Agric. Sci. Bull. 31, 159–163. https://doi.org/10.11924/j.issn.1000-6850.2014-1871 (2015).

    Article 

    Google Scholar 

  • Zhang, Y. et al. Dietary corn-resistant starch suppresses broiler abdominal fat deposition associated with the reduced cecal Firmicutes. Poult. Sci. 99, 5827–5837. https://doi.org/10.1016/j.psj.2020.07.042 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pilla, R. et al. Effects of metronidazole on the fecal microbiome and metabolome in healthy dogs. J. Vet. Intern. Med. 34, 1853–1866. https://doi.org/10.1111/jvim.15871 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hong, S. Cloning and identification of a novel CDF family transporter gene cdffT from Planococcus sp. NEAU-ST10–9 Master thesis, Northeast Forestry University (2014).

  • Egan, S., Thomas, T. & Kjelleberg, S. Unlocking the diversity and biotechnological potential of marine surface associated microbial communities. Curr. Opin. Microbiol. 11, 219–225. https://doi.org/10.1016/j.mib.2008.04.001 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, J. et al. Sex plays a role in the construction of epiphytic bacterial communities on the algal bodies and receptacles of Sargassum thunbergii. Front. Microbiol. 13, 935222. https://doi.org/10.3389/fmicb.2022.935222 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, J. et al. Diversity of epiphytic bacterial communities on male and female Sargassum thunbergii. AMB Express 12, 97. https://doi.org/10.1186/s13568-022-01439-1 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang, X. X. et al. Simulated intertidal UV-B radiation enhancement large-sized seaweed culture irradiation system, has salinity detector and temperature detector, culturing tank provided with fluorescent lamp tube and adjustable bracket. China patent CN208047639-U (2018).

  • Lu, P. et al. Gender differences response characteristics of Sargassum thunbergii in reactive oxygen species scavenging system to enhanced UV-B radiation. Period. Ocean Univ. China 52, 52–59. https://doi.org/10.16441/j.cnki.hdxb.20210224 (2022).

    Article 
    ADS 

    Google Scholar 

  • Ren, G. et al. Response of soil, leaf endosphere and phyllosphere bacterial communities to elevated CO2 and soil temperature in a rice paddy. Plant Soil 392, 27–44. https://doi.org/10.1007/s11104-015-2503-8 (2015).

    Article 
    CAS 

    Google Scholar 

  • Mathai, P. et al. Spatial and temporal characterization of epiphytic microbial communities associated with Eurasian Watermilfoil: A highly invasive macrophyte in North America. FEMS Microbiol. Ecol. 94, 12–21. https://doi.org/10.1093/femsec/fiy178 (2018).

    Article 
    CAS 

    Google Scholar 

  • Czekalski, N., Berthold, T., Caucci, S., Egli, A. & Bürgmann, H. Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into lake Geneva, Switzerland. Front. Microbiol. 3, 106–106. https://doi.org/10.3389/fmicb.2012.00106 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.1038/s41587-019-0252-6 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Janssen, S. et al. Phylogenetic placement of exact amplicon sequences improves associations with clinical information. MSystems 3, e00021-e118. https://doi.org/10.1128/mSystems.00021-18 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, S. et al. Exploring untapped potential of Streptomyces spp. in Gurbantunggut Desert by use of highly selective culture strategy. Sci. Total Environ. 790, 148235. https://doi.org/10.1016/j.scitotenv.2021.148235 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Qin, W. et al. Gut microbiota plasticity influences the adaptability of wild and domestic animals in co-inhabited areas. Front. Microbiol. 11, 125. https://doi.org/10.3389/fmicb.2020.00125 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Douglas, G. M., Beiko, R. G. & Langille, M. G. I. Predicting the functional potential of the microbiome from marker genes using PICRUSt. Methods Mol. Biol. 169–177, 2018. https://doi.org/10.1007/978-1-4939-8728-311 (1849).

    Article 

    Google Scholar 

  • Kanehisa, M. et al. KEGG: Ntegrating viruses and cellular organisms. Nucleic Acids Res. 49, D545–D551. https://doi.org/10.1093/nar/gkaa970 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951. https://doi.org/10.1002/pro.3715 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Douglas, G. M. et al. PICRUSt2: An improved and extensible approach for metagenome inference. BioRxiv 7, 672295. https://doi.org/10.1101/672295 (2019).

    Article 

    Google Scholar 

  • A meta-analysis of the stony coral tissue loss disease microbiome finds key bacteria in unaffected and lesion tissue in diseased colonies

    Diversity of life history and population connectivity of threadfin fish Eleutheronema tetradactylum along the coastal waters of Southern China