in

Effects of UV-B radiation on epiphytic bacterial communities on male and female Sargassum thunbergii

  • Roux, R., Gosselin, M., Desrosiers, G. & Nozais, C. Effects of reduced UV radiation on a microbenthic community during a microcosm experiment. Mar. Ecol. Prog. Ser. 225, 29–43. https://doi.org/10.3354/meps225029 (2002).

    Article 
    ADS 

    Google Scholar 

  • Häder, D. P., Helbling, E. W., Williamson, C. E. & Worrest, R. C. Effects of UV radiation on aquatic ecosystems and interactions with climate change. Photochem. Photobiol. Sci. 10, 242–260. https://doi.org/10.1039/C0PP90036B (2011).

    Article 
    PubMed 

    Google Scholar 

  • Schmidt, É. C. et al. Response of the agarophyte Gelidium floridanum after in vitro exposure to ultraviolet radiation B: changes in ultrastructure, pigments, and antioxidant systems. J. Appl. Phycol. 24, 1341–1352. https://doi.org/10.1007/s10811-012-9786-4 (2012).

    Article 
    CAS 

    Google Scholar 

  • Zhu, L. et al. Physiological responses of macroalga Gracilaria lemaneiformis (Rhodophyta) to UV-B radiation exposure. Chin. J. Oceanol. Limnol. 33, 389–399. https://doi.org/10.1007/s00343-015-4073-2 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Liu, Y. N., Ao, M., Li, B. & Guan, Y. X. Effect of ultraviolet- B( UV-B) radiation on plant growth and development and its application value. Soils and Crops 9, 191–202. https://doi.org/10.11689/j.issn.2095-2961.2020.02.011 (2020).

    Article 

    Google Scholar 

  • Chen, Y. Y., Xu, X. L., Shen, X. Y. & Zhang, Z. G. Advances of Research on Effects of Enhanced UV-B on Algae. JiangXi Science 23, 180–184. https://doi.org/10.13990/j.issn1001-3679.2005.02.025 (2005).

    Article 

    Google Scholar 

  • Aguilera, J., Bischof, K., Karsten, U., Hanelt, D. & Wiencke, C. Seasonal variation in ecophysiological patterns in macroalgae from an Arctic fjord. II. Pigment accumulation and biochemical defence systems against high light stress. Mar. Biol. 140, 1087–1095. https://doi.org/10.1007/s00227-002-0792-y (2002).

    Article 
    CAS 

    Google Scholar 

  • Xu, F. H., Zhang, P. Y., Yu, D. S. & Li, Y. The effect of enhanced UV-B radiation to the growth of Ulva Pertusa Kjell man and Platy monas Hel gol andi ca Kylin var. Tsi ngt aoensis. J. Qingdao Univ. (E & T) 21, 49–53. https://doi.org/10.3969/j.issn.1006-9798.2006.02.010 (2006).

    Article 
    CAS 

    Google Scholar 

  • Guan, W. C., Chen, H., Wang, T., Chen, S. & Xu, J. Effect of the solar ultraviolet radiation on the growth and fluorescence parameters of Sargassum horner. J. Fish. China 40, 83–91. https://doi.org/10.11964/jfc.20150109683 (2016).

    Article 

    Google Scholar 

  • Sun, Y. et al. Physiological responses and metabonomics analysis of male and female Sargassum thunbergii macroalgae exposed to ultraviolet-B stress. Front. Plant Sci. https://doi.org/10.3389/fpls.2022.778602 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, Y. et al. The differing responses of central carbon cycle metabolism in male and female Sargassum thunbergii to ultraviolet-B radiation. Front. Plant Sci. 13, 10. https://doi.org/10.3389/fpls.2022.904943 (2022).

    Article 

    Google Scholar 

  • Lu, P. et al. Gender differences response characteristics of Sargassum thunbergii in reactive oxygen species scavenging system to enhanced UV-B radiation. Period. Ocean Univ. China 52, 5259. https://doi.org/10.16441/j.cnki.hdxb.20210224 (2022).

    Article 
    ADS 

    Google Scholar 

  • Ji, Y., Xu, Z., Zou, D. & Gao, K. Ecophysiological responses of marine macroalgae to climate change factors. J. Appl. Phycol. 28, 2953–2967. https://doi.org/10.1007/s10811-016-0840-5 (2016).

    Article 
    CAS 

    Google Scholar 

  • Chen, S. W. & Wu, B. X. Algal responses to enhanced UV-B and its mechanism on molecular level. J. Jinan Univ. (Nat. Sci.) 21, 88–94. https://doi.org/10.3969/j.issn.1000-9965.2000.05.017 (2000).

    Article 
    CAS 

    Google Scholar 

  • Pescheck, F., Lohbeck, K. T., Roleda, M. Y. & Bilger, W. UV-B -induced DNA and photosystem II damage in two intertidal green macroalgae: distinct survival strategies in UV-screening and non-screening Chlorophyta. J. Photochem. Photobiol. B 132, 85–93. https://doi.org/10.1016/j.jphotobiol.2014.02.006 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dong, K. Physiological and biochemical responses of Ulva pertusa and Sargassum thunbergii to UV-B radiation Master thesis, Ocean University of China (2008).

  • Selvarajan, R., Sibanda, T., Venkatachalam, S., Ogola, H. & Msagati, T. A. Distribution, interaction and functional profiles of epiphytic bacterial communities from the rocky intertidal seaweeds, South Africa. Sci. Rep. 9, 19835. https://doi.org/10.1038/s41598-019-56269-2 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Z. H., Tang, L. L. & Zhang, Y. Y. Algae-bacteria interactions and their ecological functions in the ocean. Microbiol. China 45, 2043–2053. https://doi.org/10.13344/j.microbiol.china.180178 (2018).

    Article 

    Google Scholar 

  • Xuan, L. et al. Effects of UV-B radiation on quantity of epiphytic bacteria, endophytic bacteria and physiological mechanism of Erigeron breviscapus. Ecol. Environ. Sci. 18, 2211–2215. https://doi.org/10.16258/j.cnki.1674-5906.2009.06.055 (2009).

    Article 

    Google Scholar 

  • Zheng, H. Effects of UV-B radiation on the endophytic bacteria in plants of Qinghai-Tibet plateau Master thesis, Lanzhou University (2009).

  • Dobretsov, S., Véliz, K., Romero, M. S., Tala, F. & Thiel, M. Impact of UV radiation on the red seaweed Gelidium lingulatum and its associated bacteria. Eur. J. Phycol. 56, 129–141. https://doi.org/10.1080/09670262.2020.1775309 (2021).

    Article 
    CAS 

    Google Scholar 

  • Serebryakova, A., Aires, T., Viard, F., Serrao, E. & Engelen, A. Summer shifts of bacterial communities associated with the invasive brown seaweed Sargassum muticum are location and tissue dependent. PLoS ONE 13, e0206734. https://doi.org/10.1371/journal.pone.0206734 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Florez, J. Z., Carolina, C., Hengst, M. B. & Buschmann, A. H. A functional perspective analysis of macroalgae and epiphytic bacterial community interaction. Front. Microbiol. 8, 2561. https://doi.org/10.3389/fmicb.2017.02561 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, X. et al. Different growth sensitivity to enhanced UV-B radiation between male and female Populus cathayana. Tree Physiol. 30, 1489–1498. https://doi.org/10.1093/treephys/tpq094 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, M. et al. Various responses of antioxidant enzyme system and photosynthetic pigments in male and female mulberry (Morus alba L.) seedlings to UV-B radiation. J. China West Normal Univ. (Nat. Sci.) 35, 327–332. https://doi.org/10.16246/j.issn.1673-5072.2014.04.010 (2014).

    Article 

    Google Scholar 

  • Norul, S. et al. Accumulation of phenolics and growth of dioecious Populus tremula (L.) seedlings over three growing seasons under elevated temperature and UV-B radiation. Plant Physiol. Biochem. 165, 114–122. https://doi.org/10.1016/j.plaphy.2021.05.012 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sun, Y. et al. Development and utilization status of Sargassum thunbergii. Fish. Sci. Technol. Inf. 45, 343–346. https://doi.org/10.16446/j.cnki.1001-1994.2018.06.011 (2018).

    Article 

    Google Scholar 

  • Amaral-Zettler, L. A. et al. Comparative mitochondrial and chloroplast genomics of a genetically distinct form of Sargassum contributing to recent “Golden Tides” in the Western Atlantic. Ecol. Evol. 7, 516–525. https://doi.org/10.1002/ece3.2630 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, H., Liu, H., Yang, D. & Li, M. Research present situation of Sargassum thunbergii. Terr. Nat. Resour. Study 1, 95–96. https://doi.org/10.16202/j.cnki.tnrs.2010.01.009 (2010).

    Article 

    Google Scholar 

  • Njage, P. et al. Quantitative microbial risk assessment based on whole genome sequencing data: case of Listeria monocytogenes. Microorganisms 8, 1772. https://doi.org/10.3390/microorganisms8111772 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McHugh, A. J. et al. Tracking the dairy microbiota from farm bulk tank to skimmed milk powder. mSystems 5, e00226-00220. https://doi.org/10.1128/mSystems.00226-20 (2020).

    Article 

    Google Scholar 

  • Sun, Y. Polyphasic Taxonomy of Fluviibacterium aquatile SM1902T and Effect of starvation treatment on the variation of bacterial community in the open ocean surface seawater Master thesis, Shandong University, (2020).

  • Gao, X. et al. Survival, virulent characteristics, and transcriptomic analyses of the pathogenic Vibrio anguillarum under starvation stress. Front. Cell. Infect. Microbiol. 16, 389. https://doi.org/10.3389/fcimb.2018.00389 (2018).

    Article 
    CAS 

    Google Scholar 

  • Gao, Y. Study on denitrification performance of marine anammox bacteria under UV and electron mediators Master thesis, Qingdao University, (2020).

  • Fernández Zenoff, V., Siñeriz, F. & Farías, M. E. Diverse responses to UV-B radiation and repair mechanisms of bacteria isolated from high-altitude aquatic environments. Appl. Environ. Microbiol. 72, 7857–7863. https://doi.org/10.1128/aem.01333-06 (2006).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kadivar, H. & Stapleton, A. E. Ultraviolet radiation alters maize phyllosphere bacterial diversity. Microb. Ecol. 45, 353–361. https://doi.org/10.1007/s00248-002-1065-5 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lynch, M. D. J. & Neufeld, J. D. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13, 217–229. https://doi.org/10.1038/nrmicro3400 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reintjes, G., Arnosti, C., Fuchs, B. & Amann, R. Selfish, sharing and scavenging bacteria in the Atlantic Ocean: A biogeographical study of bacterial substrate utilisation. ISME J. 13, 1119–1132. https://doi.org/10.1038/s41396-018-0326-3 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roth Rosenberg, D. et al. Prochlorococcus cells rely on microbial interactions rather than on chlorotic resting stages to survive long-term nutrient starvation. MBio 11, e01846-01820. https://doi.org/10.1128/mBio.01846-20 (2020).

    Article 

    Google Scholar 

  • Berg, K. A. et al. High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. ISME J. 3, 314–325. https://doi.org/10.1038/ismej.2008.110 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pootakham, W. et al. High resolution profiling of coral-associated bacterial communities using full-length 16S rRNA sequence data from PacBio SMRT sequencing system. Sci. Rep. 7, 2774. https://doi.org/10.1038/s41598-017-03139-4 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Soto, C. Y. et al. IS6110 mediates increased transcription of the phoP virulence gene in a multidrug-resistant clinical isolate responsible for tuberculosis outbreaks. J. Clin. Microbiol. 42, 212–219. https://doi.org/10.1128/jcm.42.1.212-219.2004 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Di Cesare, A. et al. Diverse distribution of Toxin-Antitoxin II systems in Salmonella enterica serovars. Sci. Rep. 6, 28759. https://doi.org/10.1038/srep28759 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Das, S., Saha, S. K., De, A., Das, D. & Khuda-Bukhsh, A. R. Potential of the homeopathic remedy, Arnica Montana 30C, to reduce DNA damage in Escherichia coli exposed to ultraviolet irradiation through up-regulation of nucleotide excision repair genes. Zhong Xi Yi Jie He Xue Bao 10, 337–346. https://doi.org/10.3736/jcim20120314 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Jallouli, W., Sellami, S., Sellami, M. & Tounsi, S. Efficacy of olive mill wastewater for protecting Bacillus thuringiensis formulation from UV radiations. Acta Trop. 140, 19–25. https://doi.org/10.1016/j.actatropica.2014.07.016 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, L. et al. Effects of UV-B radiation on the expression of four pathogenic genes in the infection stage of Magnaporthe grisea. J. Agro-Environ. Sci. 38, 494–501. https://doi.org/10.11654/jaes.2018-0625 (2019).

    Article 

    Google Scholar 

  • He, K., Marden, J. N., Quardokus, E. M. & Bauer, C. E. Phosphate flow between hybrid histidine kinases CheA3 and CheS3 controls Rhodospirillum centenum cyst formation. PLoS Genet. 9, e1004002. https://doi.org/10.1371/journal.pgen.1004002 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deutscher, J., Francke, C. & Postma, P. W. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev. 70, 939–1031. https://doi.org/10.1128/mmbr.00024-06 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, L., Zhao, Y., Zhou, B., Dong, K. S. & Tang, X. X. Effect of UV-B irradiation on the activity and isoforms of antioxidant enzymes in the Brown Alga Sargassum thunbergii(Mert.) O.Kuntze. Period. Ocean Univ. China 39, 1246–1250. https://doi.org/10.3969/j.issn.1672-5174.2009.06.012 (2009).

    Article 
    CAS 

    Google Scholar 

  • Li, L., Tang, T., Hai, M., Chen, J. & Zhou, P. Response and molecular mechanisms of plants to enhanced UV-B radiation. Chin. Agric. Sci. Bull. 31, 159–163. https://doi.org/10.11924/j.issn.1000-6850.2014-1871 (2015).

    Article 

    Google Scholar 

  • Zhang, Y. et al. Dietary corn-resistant starch suppresses broiler abdominal fat deposition associated with the reduced cecal Firmicutes. Poult. Sci. 99, 5827–5837. https://doi.org/10.1016/j.psj.2020.07.042 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pilla, R. et al. Effects of metronidazole on the fecal microbiome and metabolome in healthy dogs. J. Vet. Intern. Med. 34, 1853–1866. https://doi.org/10.1111/jvim.15871 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hong, S. Cloning and identification of a novel CDF family transporter gene cdffT from Planococcus sp. NEAU-ST10–9 Master thesis, Northeast Forestry University (2014).

  • Egan, S., Thomas, T. & Kjelleberg, S. Unlocking the diversity and biotechnological potential of marine surface associated microbial communities. Curr. Opin. Microbiol. 11, 219–225. https://doi.org/10.1016/j.mib.2008.04.001 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, J. et al. Sex plays a role in the construction of epiphytic bacterial communities on the algal bodies and receptacles of Sargassum thunbergii. Front. Microbiol. 13, 935222. https://doi.org/10.3389/fmicb.2022.935222 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, J. et al. Diversity of epiphytic bacterial communities on male and female Sargassum thunbergii. AMB Express 12, 97. https://doi.org/10.1186/s13568-022-01439-1 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang, X. X. et al. Simulated intertidal UV-B radiation enhancement large-sized seaweed culture irradiation system, has salinity detector and temperature detector, culturing tank provided with fluorescent lamp tube and adjustable bracket. China patent CN208047639-U (2018).

  • Lu, P. et al. Gender differences response characteristics of Sargassum thunbergii in reactive oxygen species scavenging system to enhanced UV-B radiation. Period. Ocean Univ. China 52, 52–59. https://doi.org/10.16441/j.cnki.hdxb.20210224 (2022).

    Article 
    ADS 

    Google Scholar 

  • Ren, G. et al. Response of soil, leaf endosphere and phyllosphere bacterial communities to elevated CO2 and soil temperature in a rice paddy. Plant Soil 392, 27–44. https://doi.org/10.1007/s11104-015-2503-8 (2015).

    Article 
    CAS 

    Google Scholar 

  • Mathai, P. et al. Spatial and temporal characterization of epiphytic microbial communities associated with Eurasian Watermilfoil: A highly invasive macrophyte in North America. FEMS Microbiol. Ecol. 94, 12–21. https://doi.org/10.1093/femsec/fiy178 (2018).

    Article 
    CAS 

    Google Scholar 

  • Czekalski, N., Berthold, T., Caucci, S., Egli, A. & Bürgmann, H. Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into lake Geneva, Switzerland. Front. Microbiol. 3, 106–106. https://doi.org/10.3389/fmicb.2012.00106 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.1038/s41587-019-0252-6 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Janssen, S. et al. Phylogenetic placement of exact amplicon sequences improves associations with clinical information. MSystems 3, e00021-e118. https://doi.org/10.1128/mSystems.00021-18 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, S. et al. Exploring untapped potential of Streptomyces spp. in Gurbantunggut Desert by use of highly selective culture strategy. Sci. Total Environ. 790, 148235. https://doi.org/10.1016/j.scitotenv.2021.148235 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Qin, W. et al. Gut microbiota plasticity influences the adaptability of wild and domestic animals in co-inhabited areas. Front. Microbiol. 11, 125. https://doi.org/10.3389/fmicb.2020.00125 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Douglas, G. M., Beiko, R. G. & Langille, M. G. I. Predicting the functional potential of the microbiome from marker genes using PICRUSt. Methods Mol. Biol. 169–177, 2018. https://doi.org/10.1007/978-1-4939-8728-311 (1849).

    Article 

    Google Scholar 

  • Kanehisa, M. et al. KEGG: Ntegrating viruses and cellular organisms. Nucleic Acids Res. 49, D545–D551. https://doi.org/10.1093/nar/gkaa970 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951. https://doi.org/10.1002/pro.3715 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Douglas, G. M. et al. PICRUSt2: An improved and extensible approach for metagenome inference. BioRxiv 7, 672295. https://doi.org/10.1101/672295 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Working to make nuclear energy more competitive

    Titanic robots make farming more sustainable