Bentley, E. W. A review of anticoagulant rodenticides in current use. Bull. Wid Htlh Org. 47, 275–280 (1972).
Google Scholar
Ravindran, S., Mohd Noor, H. & Salim, H. Anticoagulant rodenticide use in oil palm plantations in Southeast Asia and hazard assessment to non-target animals. Ecotoxicology https://doi.org/10.1007/s10646-022-02559-x (2022).
Google Scholar
Wood, B. J. & Chung, G. F. A critical review of the development of rat control in Malaysian agriculture since the 1960s. Crop Prot. 22, 445–454 (2003).
Google Scholar
Wood, B. J. & Chung, G. F. Warfarin resistance of Rattus tiomanicus in oil palms in Malaysia and the associated increase of Rattus diardii. In Proceedings of the Fourteenth Vertebrate Pest Conference 1990. vol. 81, 129–134 (1990).
Buckle, A. Anticoagulant resistance in the United Kingdom and a new guideline for the management of resistant infestations of Norway rats (Rattus norvegicus Berk.). Pest Manag Sci. 69(3), 334−341 (2012).
Google Scholar
Greaves, J. H. & Cullen-Ayres, P. B. Genetics of difenacoum resistance in the rat. In Current Advances in Vitamin K Research. 17th Steenbock Symposium (ed. Suttie, J. W.) 387–397 (Elsevier, 1988).
Marsh, R. E. Bromadiolone, a new anticoagulant rodenticide. EPPO. 7(2), 495–502 (1977).
Google Scholar
Ishizuka, M. et al. Pesticide resistance in wild mammals-mechanisms of anticoagulant resistance in wild rodents. J. Toxicol. Sci. 33, 283–291 (2008).
Google Scholar
Kohn, M. H., Pelz, H.-J. & Wayne, R. K. Locus-specific genetic differentiation at Rw among warfarin-resistant rat (Rattus norvegicus) populations. Genet. Soc. Am. 164, 1055–1070 (2003).
Google Scholar
Vein, J., Grandemange, A., Cosson, J. F., Benoit, E. & Berny, P. J. Are water vole resistant to anticoagulant rodenticides following field treatments?. Ecotoxicology 20, 1432–1441 (2011).
Google Scholar
Salim, H. et al. Secondary poisoning of captive barn owls, Tyto alba javanica through feeding with rats poisoned with chlorophacinone and bromadiolone. J. Oil Palm Res. 26(1), 62–72 (2014).
Google Scholar
Thomas, P. J. et al. Second generation anticoagulant rodenticides in predatory birds: Probabilistic characterization of toxic liver concentrations and implications for predatory bird populations in Canada. Environ. Int. 37(5), 914–920 (2011).
Google Scholar
Marshall, E. F. Cholecalciferol: A unique toxicant for rodent control. In Proceedings, Eleventh Vertebrate Pest Conference (ed. Clark, D. O.) 95–98 (University of California, 1984).
Tobin, M. E., Matschke, C. H., Sugihara, R. T., McCann, C. R., Koehler, A. E. & Andrews, K. T. Laboratory efficacy of cholecalciferol against field rodents. DWRC Research Report No. 11–55–002. (U.S. Department of Agriculture, Animal and Plant Health Inspection Service, 1993).
Bull, J. O. Urban pest management, the past, the present, the future. Pest Manag. 2(3), 8–12 (1983).
Eason, C. T., Frampton, C. M., Henderson, R., Thomas, M. D. & Morgan, D. R. Sodium monofluoroacetate and alternative toxins for possum control. N. Z. J. Zool. 20, 329–334 (1993).
Google Scholar
Eason, C. T. et al. Toxicity of cholecalciferol to rats in a multi-species bait. N. Z. J. Ecol. 34(2), 233–236 (2010).
Pospischil, R. & Schnorbach, H. J. Racumin plus, a new promising rodenticide against rats and mice. In Proceedings of the 16th Vertebrate Pest Conference University of Nebraska, Lincoln, 180–187 (1994.
Baldwin, R. A., Meinerz, R. & Witmer, G. W. Cholecalciferol plus diphacinone baits for vole control: A novel approach to a historic problem. J. Pestic. Sci. 89, 129–135 (2016).
Google Scholar
Eason, C. T., Wickstrom, M., Henderson, R., Milne, L. & Arthur, D. Non-target and secondary poisoning risks associated with cholecalciferol. N. Z. Plant Prot. 53, 299–304 (2000).
Google Scholar
Baldwin, R. A., Meinerz, R. & Witmer, G. W. Are cholecalciferol plus anticoagulant rodenticides a viable option for field rodents? In Proceeding of 27th Vertebrate Pest Conference, 407–410 (University of California Davis, 2016).
British Pest Control Association. BASF introduces new Cholecalciferol-based rodenticide bait in Europe. https://bpca.org.uk/News-and-Blog/basf-introduces-new-cholecalciferol-based-rodenticide (2020).
Horst, R. L., Napoli, J. L. & Littledike, E. T. Discrimination in the metabolism of orally dosed ergocalciferol and cholecalciferol by the pig, rat and chick. Biochem. J. 204, 185–189 (1982).
Google Scholar
Beasley, V. R., Dorman, D. C., Fikes, J. D., Diana, S. G. & Woshner, V. Cholecalciferol-based rodenticides and other vitamin d-containing products. In A Systems Affected Approach to Veterinary Toxicology 445–450 (University of Illinois Press, 1997).
Jolly, S. E., Eason, C. T. & Frampton, C. Serum calcium levels in response to cholecalciferol and calcium carbonate in the Australian brush-tailed possum. Pestic. Biochem. Physiol. 47, 159–164 (1993).
Google Scholar
Marsh, R. & Tunberg, A. Characteristics of cholecalciferol. Rodent control: Other options. Pest Control Technol. 14, 43–45 (1986).
Morgan, D. R. & Rhodes, A. T. Feracol® paste bait for possum control—a cage trial. N. Z. Plant Prot. 53, 305–309 (2000).
Google Scholar
Zainal Abidin, C. M. R. et al. Comparison of effectiveness of introduced barn owls, Tyto javanica javanica, and rodenticide treatments on rat control in oil palm plantations. J. Pest. Sci. 95, 1009–1022. https://doi.org/10.1007/s10340-021-01423-x (2022).
Google Scholar
Erickson, W. & Urban, D. Potential risks of nine rodenticides to birds and nontarget mammals: a comparative approach (United States Environmental Protection Agency, Office of Pesticides Programs Environmental Fate and Effects Division, 2004).
Khoo, K. C., Peter, A. C. O. & Ho, C. T. Crop Pests and Their Management in Malaysia (Tropical Press Sdn. Bhd, 1991).
Fisher, P., Eason, C., O’Connor, C., Lee, C. H. & Endepols, S. Coumatetralyl residues in rats and hazards to barn owls. In Rats, Mice and People: Rodent Biology and Management (eds Singleton, G. R. et al.) 457–461 (Australia Centre for International Agricultural Research, 2003).
Lee, C. H. Secondary Toxicity of Some Rodenticides to Barn Owls. In 4th International Conference of Plant Protection in the Tropics, 28–31 March, Kuala Lumpur, Malaysia 161–163 (1994).
Mendenhall, V. M. & Pank, L. F. Secondary poisoning of owls by anticoagulant rodenticides. Wildl. Soc. Bull. 8, 311–315 (1980).
Saravanan, K. & Kanakasabai, R. Evaluation of secondary poisoning of difethialone, a new second-generation anticoagulant rodenticide to Barn owl, Tyto alba Hartert under captivity. Indian J. Exp. Biol. 42, 1013–1016 (2004).
Google Scholar
Eason, C. T., Wright, G. R., Meikle, L. & Elder, P. The persistence and secondary poisoning risks of sodium monofluoroacetate (1080), brodifacoum, and cholecalciferol in possum. In Proc. 17th Vertebr. Pest Conf. 54–58 (1996).
Malaysia Standard: MS1256. Household Insecticide Products-Rat Bait-Chemical, Physical and Biological Efficacy Requirements. (Department of Standard Malaysia, 2007).
Swenson, J. & Bradley, G. A. Suspected cholecalciferol rodenticide toxicosis in avian species at a zoological institution. J. Avian Med. Surg. 27(2), 136–147 (2013).
Google Scholar
PMEP (Pesticide Management Education Program). Chlorophacinone (Rozol) chemical profile 1/85. Pesticide Management Education Program, Cornell University. http://pmep.cce.cornell.edu/profiles/rodent/chlorophacinone/rodprofchlorophacinone.html (2001).
Kaukeinen, D. E., Spragins, C. W. & Hobson, J. F. Risk-benefit considerations in evaluating commensal anticoagulant rodenticide impacts to wildlife. In Proceedings of the Nineteenth Vertebrate Pest Conference, USA (eds Salmon, T. P. & Crabb, A. C.) 245–256 (University of California, 2000).
Lund, M. The toxicity of chlorophacinone and warfarin to house mice (Mus musculus). J. Hyg. Camb. 69, 69 (1971).
Google Scholar
Hix, H. The Effectiveness of a Low Dose Cholecalciferol Bait at Killing Rats and Mice (2009).
Wood, B. J. & Liau, S. S. Preliminary studies on the toxicity of anti-coagulants to rats of oil palms, with special reference to the prospect of resistance. In International Development in Oil Palm. The Proceedings of the Malaysian International Agricultural of Oil Palm Conference (eds. Earp, DA & Newall, Z). Kuala Lumpur, 14–17 June 1995. The Incorporated Society of Planters, 641–659 (1977).
Lee, C. H. & Mustafa, M. D. D. Laboratory evaluation of 0.025% warfarin against Rattus tiomanicus. MARDI Res. 11(2), 132–135 (1983).
Hagan, E. C. & Radomski, J. L. The toxicity of 3-(acetonylbenzyl)-4-hydroxycoumarin (warfarin) to laboratory animals. J. Am. Pharm. Assoc. 42(379), 382 (1953).
Hafidzi, M. N; Zulkifli, A. & Kamaruddin, A. A. Barn owl as a biological control agent of rats in paddy fields. In Symposium on Biological Control in the Tropics, 85–88 (Mardi Training Centre, 1999).
Lenton, G. M. The feeding and breeding ecology of Barn Owls Tyto alba in Peninsular Malaysia. Int. J. Avian Sci. 126(4), 551–575 (1984).
Eason, C. T. & Ogilvie, S. A re-evaluation of potential rodenticides for aerial control of rodents. Department of Conservation Research and Development Series 312, Wellington, New Zealand (2009).
Gunther, R., Felice, L. J. & Nelson, R. K. Cholecalciferol rodenticide toxicity. J. Am. Vet. Med. Assoc. 193, 211–214 (1988).
Google Scholar
Gray, A., Eadsforth, C. V., Dutton, A. J. & Vaughan, J. A. Toxicity of three second generation rodenticides to barn owls. Pestic. Sci. 42, 179–184 (1994).
Google Scholar
Lutz, W. Study on the possible secondary-poisoning hazard to buzzards (Buteo buteo) by the rodenticide bromadiolone. Unpubl. Report for BBA, Forschungsstelle für Jagdkunde und Wildschadenverhütung. Bonn (DE) (in German) (1986).
Grolleau, G., Lorgue, G. & Nahas, K. Toxicitd secondaire, en laboratoire, d’un rodenticide anticoagulant (bromadiolone) pour des pr6dateurs de rongeurs champétres: Buse variable (Buteo buteo) et hermine (Mustela erminea). OEPP/EPPO. 19, 633–648 (1989).
Google Scholar
Riedel, M., Riedel, B. & Schlegelmilch, H. Risk of secondary intoxication for birds of prey and owls following use of chlorophacinone baits against common voles. Unpubl. Report (in German) (1991.).
Radvanyi, A., Weaver, P., Massari, C., Bird, D. & Broughton, E. Effects of chlorophacinone on captive kestrels. Environ. Contam. Toxicol. 41, 441–448 (1988).
Google Scholar
Rattner, B. A. et al. Toxicity reference values for chlorophacinone and their application for assessing anticoagulant rodenticide risk to raptors. Ecotoxicology 24, 720–734. https://doi.org/10.1007/s10646-015-1418-8 (2015).
Google Scholar
Rattner, B. A., Horak, K. E., Lazarus, R. S., Goldade, D. A. & Johnston, J. J. Toxicokinetics and coagulopathy threshold of the rodenticide diphacinone in eastern screech-owls (Megascops asio). Environ. Toxicol. Chem. 33(1), 8 (2014).
Google Scholar
Sánchez-Barbudo, I. S., Camarero, P. R. & Mateo, R. Primary and secondary poisoning by anticoagulant rodenticides of non-target animals in Spain. Sci. Total Environ. 420, 280–288 (2012).
Google Scholar
Evans, J. & Ward, A. L. Secondary poisoning associated with anticoagulant-killed nutria. JAVMA 151, 856–861 (1967).
Google Scholar
Prier, M. S. & Derse, P. H. Evaluation of the hazard of secondary poisoning by warfarin poisoned rodents. JAVMA 140, 351–354 (1962).
Google Scholar
Townsend, M. G., Bunyan, P. J., Odam, E. M., Stanley, P. I. & Wardall, H. P. Assessment of secondary poisoning hazard of warfarin to least weasels. J. Wildl. Manag. 48, 628–632 (1984).
Google Scholar
Source: Ecology - nature.com