Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: Evolution and determinants. Oikos 103, 247–260. https://doi.org/10.1034/j.1600-0706.2003.12559.x (2003).
Google Scholar
Somveille, M., Rodrigues, A. S. L. & Manica, A. Why do birds migrate? A macroecological perspective. Glob. Ecol. Biogeogr. 24, 664–674. https://doi.org/10.1111/geb.12298 (2015).
Google Scholar
Tatner, P. & Bryant, D. M. Flight cost of a small passerine measured using doubly labeled water: Implications for energetics studies. Auk 103, 169–180. https://doi.org/10.2307/4086976 (1986).
Google Scholar
Boisclair, D. & Leggett, W. C. The importance of activity in bioenergetics models applied to actively foraging fishes. Can. J. Fish. Aquat. Sci. 46, 1859–1867. https://doi.org/10.1139/f89-234 (1989).
Google Scholar
Karasov, W. H. Daily energy expenditure and the cost of activity in mammals. Am. Zool. 32, 238–248. https://doi.org/10.1093/icb/32.2.238 (1992).
Google Scholar
Castro, G., Myers, J. P. & Ricklefs, R. E. Ecology and energetics of sandlerlings migrating to four latitudes. Ecology 73, 833–844. https://doi.org/10.2307/1940161 (1992).
Google Scholar
Fayet, A. L. et al. Ocean-wide drivers of migration strategies and their influence on population breeding performance in a declining seabird. Curr. Biol. 27, 3871-3878.e3. https://doi.org/10.1016/j.cub.2017.11.009 (2017).
Google Scholar
Alves, J. A. et al. Costs, benefits, and fitness consequences of different migratory strategies. Ecology 94, 11–17. https://doi.org/10.1890/12-0737.1 (2013).
Google Scholar
Carneiro, C., Gunnarsson, T. G., Méndez, V., Soares, A. M. & Alves, J. A. Linking range wide energetic tradeoffs to breeding performance in a long-distance migrant. Ecography 44, 521–524. https://doi.org/10.1111/ecog.05152 (2021).
Google Scholar
Fort, J. et al. Energetic consequences of contrasting winter migratory strategies in a sympatric Arctic seabird duet. J. Avian Biol. 44, 255–262. https://doi.org/10.1111/j.1600-048X.2012.00128.x (2013).
Google Scholar
Garthe, S. et al. Energy budgets reveal equal benefits of varied migration strategies in northern gannets. Mar. Biol. 159, 1907–1915 (2012).
Google Scholar
Pelletier, D. et al. So far, so good… Similar fitness consequences and overall energetic costs for short and long-distance migrants in a seabird. PLoS One 15, e0230262. https://doi.org/10.1371/journal.pone.0230262 (2020).
Google Scholar
Tinbergen, J. M. & Verhulst, S. A fixed energetic ceiling to parental effort in the great tit?. J. Anim. Ecol. 69, 323–334 (2000).
Google Scholar
Drent, R. H. & Daan, S. The prudent parent: Energetic adjustments in avian breeding 1. Ardea 68, 225–252 (1980).
Weiner, J. Physiological limits to sustainable energy budgets in birds and mammals: Ecological implications. Trends Ecol. Evol. 7, 384–388 (1992).
Google Scholar
Hammond, K. A. & Diamond, J. Maximal sustained energy budgets in humans and animals. Nature 386, 457–462 (1997).
Google Scholar
Speakman, J. R. & Król, E. Maximal heat dissipation capacity and hyperthermia risk: Neglected key factors in the ecology of endotherms. J. Anim. Ecol. 79, 726–746. https://doi.org/10.1111/j.1365-2656.2010.01689.x (2010).
Google Scholar
Deerenberg, C. et al. Parental energy expenditure in relation to manipulated brood size in the European kestrel. Zool. Anal. Complex Syst. 99, 38–47 (1995).
Daan, S., Deerenberg, C. & Dijkstra, C. Increased daily work precipitates natural death in the kestrel. J. Anim. Ecol. 65, 539–544. https://doi.org/10.2307/5734 (1996).
Google Scholar
Newton, I. Migration within the annual cycle: Species, sex and age differences. J. Ornithol. 152, 169–185 (2011).
Google Scholar
Wingfield, J. C. Organization of vertebrate annual cycles: Implications for control mechanisms. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 425–441. https://doi.org/10.1098/rstb.2007.2149 (2008).
Google Scholar
Barta, Z. et al. Optimal moult strategies in migratory birds. Philos. Trans. R. Soc. B Biol. Sci. 363, 211–229. https://doi.org/10.1098/rstb.2007.2136 (2008).
Google Scholar
Wingfield, J. C. Flexibility in annual cycles of birds: Implications for endocrine control mechanisms. J. Ornithol. 146, 291–304. https://doi.org/10.1007/s10336-005-0002-z (2005).
Google Scholar
Bryant, D. M. Energy expenditure in wild birds. Proc. Nutr. Soc. 56, 1025–1039. https://doi.org/10.1079/PNS19970107 (1997).
Google Scholar
Lustick, S. Energy requirements of molt in cowbirds. Auk 87, 742–746. https://doi.org/10.2307/4083708 (1970).
Google Scholar
Murphy, M. E. & King, J. R. Energy and nutrient use during moult by white-crowned sparrows Zonotrichia leucophrys gambelii. Ornis Scand. (Scand. J. Ornithol.) 23, 304–313. https://doi.org/10.2307/3676654 (1992).
Google Scholar
Lindström, Å., Visser, G. H. & Daan, S. The energetic cost of feather synthesis is proportional to basal metabolic rate. Physiol. Zool. 66, 490–510. https://doi.org/10.1086/physzool.66.4.30163805 (1993).
Google Scholar
Buttemer, W. A., Nicol, S. C. & Sharman, A. Thermoenergetics of pre-moulting and moulting kookaburras (Dacelo novaeguineae): They’re laughing. J. Comp. Physiol. B. 173, 223–230 (2003).
Google Scholar
Hedenström, A. & Sunada, S. On the aerodynamics of moult gaps in birds. J. Exp. Biol. 202, 67–76. https://doi.org/10.1242/jeb.202.1.67 (1999).
Google Scholar
Cherel, Y., Quillfeldt, P., Delord, K. & Weimerskirch, H. Combination of at-sea activity, geolocation and feather stable isotopes documents where and when seabirds molt. Front. Ecol. Evol. 4, 3. https://doi.org/10.3389/fevo.2016.00003 (2016).
Google Scholar
Rohwer, S., Butler, L. K., Froehlich, D. R., Greenberg, R. & Marra pp., Ecology and demography of east–west differences in molt scheduling of Neotropical migrant passerines. In Birds of Two Worlds: The Ecology and Evolution of Migration (eds Greenberg, R. & Marra, P. P.) 87–105 (Johns Hopkins University Press, 2005).
Norris, D. R., Marra, P. P., Kyser, T. K., Sherry, T. W. & Ratcliffe, L. M. Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory bird. Proc. R. Soc. Lond. B Biol. Sci. 271, 59–64. https://doi.org/10.1098/rspb.2003.2569 (2004).
Google Scholar
Ramenofsky, M. & Wingfield, J. C. Behavioral and physiological conflicts in migrants: The transition between migration and breeding. J. Ornithol. 147, 135 (2006).
Google Scholar
Kiat, Y., Izhaki, I. & Sapir, N. The effects of long-distance migration on the evolution of moult strategies in Western-Palearctic passerines. Biol. Rev. 94, 700–720. https://doi.org/10.1111/brv.12474 (2019).
Google Scholar
Newton, I. The Migration Ecology of Birds (Academic Press, 2008).
Klaassen, R. H. G., Ens, B. J., Shamoun-Baranes, J., Exo, K.-M. & Bairlein, F. Migration strategy of a flight generalist, the Lesser Black-backed Gull Larus fuscus. Behav. Ecol. 23, 58–68. https://doi.org/10.1093/beheco/arr150 (2012).
Google Scholar
Martín-Vélez, V. et al. Functional connectivity network between terrestrial and aquatic habitats by a generalist waterbird, and implications for biovectoring. Sci. Total Environ. 705, 135886. https://doi.org/10.1016/j.scitotenv.2019.135886 (2020).
Google Scholar
Baert, J. M. et al. High-resolution GPS tracking reveals sex differences in migratory behaviour and stopover habitat use in the Lesser Black-backed Gull Larus fuscus. Sci. Rep. 8, 1–11. https://doi.org/10.1038/s41598-018-23605-x (2018).
Google Scholar
Spelt, A. et al. Habitat use of urban-nesting lesser black-backed gulls during the breeding season. Sci. Rep. 9, 1–11. https://doi.org/10.1038/s41598-019-46890-6 (2019).
Google Scholar
Tyson, C., Shamoun-Baranes, J., Van Loon, E. E., Camphuysen, K. & Hintzen, N. T. Individual specialization on fishery discards by lesser black-backed gulls (Larus fuscus). ICES J. Mar. Sci. 72, 1882–1891. https://doi.org/10.1093/icesjms/fsv021 (2015).
Google Scholar
Shamoun-Baranes, J., Burant, J. B., Loon, E. E., Bouten, W. & Camphuysen, C. J. Short distance migrants travel as far as long distance migrants in lesser black-backed gulls Larus fuscus. J. Avian Biol. 48, 49–57. https://doi.org/10.1111/jav.01229 (2017).
Google Scholar
Brown, J. M. et al. Long-distance migrants vary migratory behaviour as much as short-distance migrants: An individual-level comparison from a seabird species with diverse migration strategies. J. Anim. Ecol. 90, 1058–1070. https://doi.org/10.1111/1365-2656.13431 (2021).
Google Scholar
Brown, J. M., Bouten, W., Camphuysen, K. C. J., Nolet, B. A. & Shamoun-Baranes, J. Acceleration as a proxy for energy expenditure in a facultative-soaring bird: Comparing dynamic body acceleration and time-energy budgets to heart rate. Funct. Ecol. 36, 1627–1638. https://doi.org/10.1111/1365-2435.14055 (2022).
Google Scholar
Somveille, M., Manica, A. & Rodrigues, A. S. L. Where the wild birds go: Explaining the differences in migratory destinations across terrestrial bird species. Ecography 42, 225–236. https://doi.org/10.1111/ecog.03531 (2019).
Google Scholar
Levin, S. A. The problem of pattern and scale in ecology: The Robert H MacArthur award lecture. Ecology 73, 1943–1967 (1992).
Google Scholar
Shepard, E. L. et al. Energy landscapes shape animal movement ecology. Am. Nat. 182, 298–312. https://doi.org/10.1086/671257 (2013).
Google Scholar
Sage, E., Bouten, W., Hoekstra, B., Camphuysen, K. C. & Shamoun-Baranes, J. Orographic lift shapes flight routes of gulls in virtually flat landscapes. Sci. Rep. 9, 1–10. https://doi.org/10.1038/s41598-019-46017-x (2019).
Google Scholar
Stephens, D. W. & Krebs, J. R. Foraging Theory (Princeton University Press, 2019).
Google Scholar
Piersma, T. Why marathon migrants get away with high metabolic ceilings: Towards an ecology of physiological restraint. J. Exp. Biol. 214, 295–302. https://doi.org/10.1242/jeb.046748 (2011).
Google Scholar
Shamoun-Baranes, J., Bouten, W., Camphuysen, C. J. & Baaij, E. Riding the tide: Intriguing observations of gulls resting at sea during breeding. Ibis 153, 411–415. https://doi.org/10.1111/j.1474-919X.2010.01096.x (2011).
Google Scholar
Kavelaars, M. M. et al. Simultaneous GPS-tracking of parents reveals a similar parental investment within pairs, but no immediate co-adjustment on a trip-to-trip basis. Mov. Ecol. 9, 42. https://doi.org/10.1186/s40462-021-00279-1 (2021).
Google Scholar
Humphreys, E. M., Wanless, S. & Bryant, D. M. Elevated metabolic costs while resting on water in a surface feeder: The Black-legged Kittiwake Rissa tridactyla. Ibis 149, 106–111. https://doi.org/10.1111/j.1474-919X.2006.00618.x (2007).
Google Scholar
Lustick, S., Battersby, B. & Kelty, M. Behavioral thermoregulation: Orientation toward the sun in herring gulls. Science 200, 81–83. https://doi.org/10.1126/science.635577 (1978).
Google Scholar
Green, J. A., Boyd, I. L., Woakes, A. J., Green, C. J. & Butler, P. J. Do seasonal changes in metabolic rate facilitate changes in diving behaviour?. J. Exp. Biol. 208, 2581–2593. https://doi.org/10.1242/jeb.01679 (2005).
Google Scholar
Green, J. A. et al. An increase in minimum metabolic rate and not activity explains field metabolic rate changes in a breeding seabird. J. Exp. Biol. 216, 1726–1735. https://doi.org/10.1242/jeb.085092 (2013).
Google Scholar
White, C. R., Grémillet, D., Green, J. A., Martin, G. R. & Butler, P. J. Metabolic rate throughout the annual cycle reveals the demands of an Arctic existence in Great Cormorants. Ecology 92, 475–486 (2011).
Google Scholar
Guillemette, M. & Butler, P. J. Seasonal variation in energy expenditure is not related to activity level or water temperature in a large diving bird. J. Exp. Biol. 215, 3161–3168. https://doi.org/10.1242/jeb.061119 (2012).
Google Scholar
Dunn, R. E., Wanless, S., Daunt, F., Harris, M. P. & Green, J. A. A year in the life of a North Atlantic seabird: Behavioural and energetic adjustments during the annual cycle. Sci. Rep. 10, 1–11. https://doi.org/10.1038/s41598-020-62842-x (2020).
Google Scholar
Camphuysen, C. J. Lesser Black-backed gulls nesting at Texel. Final report (Royal Netherlands Institute for Sea Research, 2011).
Camphuysen, C. J., Shamoun-Baranes, J., van Loon, E. E. & Bouten, W. Sexually distinct foraging strategies in an omnivorous seabird. Mar. Biol. 162, 1417–1428. https://doi.org/10.1007/s00227-015-2678-9 (2015).
Google Scholar
Dunn, R. E., White, C. R. & Green, J. A. A model to estimate seabird field metabolic rates. Biol. Lett. 14, 20180190. https://doi.org/10.1098/rsbl.2018.0190 (2018).
Google Scholar
Catry, P., Dias, M. P., Phillips, R. A. & Granadeiro, J. P. Carry-over effects from breeding modulate the annual cycle of a long-distance migrant: An experimental demonstration. Ecology 94, 1230–1235. https://doi.org/10.1890/12-2177.1 (2013).
Google Scholar
Gutowsky, S. E. et al. Daily activity budgets reveal a quasi-flightless stage during non-breeding in Hawaiian albatrosses. Mov. Ecol. 2, 23. https://doi.org/10.1186/s40462-014-0023-4 (2014).
Google Scholar
Harris, M. P. Ecological adaptations of moult in some British gulls. Bird Study 18, 113–118 (1971).
Google Scholar
Verbeek, N. A. Timing of primary moult in adult herring gulls and lesser black-backed gulls. J. Ornithol. 118, 87–92 (1977).
Google Scholar
Sorensen, M. C., Hipfner, J. M., Kyser, T. K. & Norris, D. R. Carry-over effects in a Pacific seabird: Stable isotope evidence that pre-breeding diet quality influences reproductive success. J. Anim. Ecol. 78, 460–467. https://doi.org/10.1111/j.1365-2656.2008.01492.x (2009).
Google Scholar
Lok, T., Overdijk, O., Tinbergen, J. M. & Piersma, T. The paradox of spoonbill migration: Most birds travel to where survival rates are lowest. Anim. Behav. 82, 837–844 (2011).
Google Scholar
Reneerkens, J. et al. Low fitness at low latitudes: Wintering in the tropics increases migratory delays and mortality rates in an Arctic breeding shorebird. J. Anim. Ecol. 89, 691–703. https://doi.org/10.1111/1365-2656.13118 (2020).
Google Scholar
Bouten, W., Baaij, E. W., Shamoun-Baranes, J. & Camphuysen, K. C. A flexible GPS tracking system for studying bird behaviour at multiple scales. J. Ornithol. 154, 571–580. https://doi.org/10.1007/s10336-012-0908-1 (2013).
Google Scholar
Thaxter, C. B. et al. A trial of three harness attachment methods and their suitability for long-term use on Lesser Black-backed Gulls and Great Skuas. Ring. Migr. 29, 65–76. https://doi.org/10.1080/03078698.2014.995546 (2014).
Google Scholar
Shamoun-Baranes, J., Bouten, W., van Loon, E. E., Meijer, C. & Camphuysen, C. J. Flap or soar? How a flight generalist responds to its aerial environment. Philos. Trans. R. Soc. B 371, 20150395. https://doi.org/10.1098/rstb.2015.0395 (2016).
Google Scholar
Buchhorn, M., Smets, B., Bertels, L., Lesiv, M., Masiliunas, D., Linlin, L., Herold, M. & Fritz S. Copernicus Global Land Service: Land Cover 100m: Collection 3: epoch 2016–2019: Globe (2020).
Wilson, R. P. et al. Estimates for energy expenditure in free-living animals using acceleration proxies: A reappraisal. J. Anim. Ecol. 89, 161–172. https://doi.org/10.1111/1365-2656.13040 (2019).
Google Scholar
Cartar, R. V. & Morrison, R. G. Estimating metabolic costs for homeotherms from weather data and morphology: An example using calidridine sandpipers. Can. J. Zool. 75, 94–101 (1997).
Google Scholar
Baveco, J. M., Kuipers, H. & Nolet, B. A. A large-scale multi-species spatial depletion model for overwintering waterfowl. Ecol. Model. 222, 3773–3784 (2011).
Google Scholar
Hersbach H et al. ERA5 hourly data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.adbb2d47 (2018).
Bevan, R. M., Butler, P. J., Woakes, A. J. & Prince, P. A. The energy expenditure of free-ranging black-browed albatrosses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 350, 119–131. https://doi.org/10.1098/rstb.1995.0146 (1995).
Google Scholar
Bevan, R. M. & Butler, P. J. The effects of temperature on the oxygen consumption, heart rate and deep body temperature during diving in the tufted duck Aythya fuligula. J. Exp. Biol. 163, 139–151. https://doi.org/10.1242/jeb.163.1.139 (1992).
Google Scholar
Stahel, C. D. & Nicol, S. C. Temperature regulation in the little penguin, Eudyptula minor, in air and water. J. Comp. Physiol. 148, 93–100 (1982).
Google Scholar
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).
Google Scholar
Wood, S. mgcv: Mixed GAM Computation Vehicle with Automatic Smoothness Estimation (2021).
Zuur, A. F. Beginner’s Guide to Spatial, Temporal, and Spatial-Temporal Ecological Data Analysis with R-INLA (Highland Statistics Ltd., 2017).
Brown, J. M., Bouten, W., Camphuysen, K., Nolet, B. A. & Shamoun-Baranes, J. Z. Data and code archive for ‘Energetic and behavioral consequences of migration: An empirical evaluation in the context of the full annual cycle’. https://doi.org/10.21942/uva.21583926.v1 (2022).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis. https://ggplot2.tidyverse.org (Springer, 2016).
South, A. rworldmap: Mapping Global Data. http://cran.r-project.org/web/packages/rworldmap (2016).
Natural Earth. V 1.4.0. Free vector and raster map data at 1:10m, 1:50m, and 1:110m scales. https://www.naturalearthdata.com/downloads/.
Source: Ecology - nature.com