in

Half a century of rising extinction risk of coral reef sharks and rays

  • Plaisance, L., Caley, M. J., Brainard, R. E. & Knowlton, N. The diversity of coral reefs: what are we missing? PLoS One. 6, e25026 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).

    Article 

    Google Scholar 

  • Mora, C. et al. Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes. PLoS Biol. 9, e1000606 (2011).

    Article 
    CAS 

    Google Scholar 

  • Burke, L., Reytar, K., Spalding, M. & Perry, A. Reefs at Risk Revisited. 130 pp. (World Resources Institute, Washington, D.C., 2011).

  • Hicks, C. C., Graham, N. A. J., Maire, E. & Robinson, J. P. W. Secure local aquatic food systems in the face of declining coral reefs. One Earth. 4, 1214–1216 (2021).

    Article 
    ADS 

    Google Scholar 

  • Cinner, J. E. et al. Gravity of human impacts mediates coral reef conservation gains. PNAS 115, E6116–E6125 (2018).

    Article 
    CAS 

    Google Scholar 

  • Eddy, T. D. et al. Global decline in capacity of coral reefs to provide ecosystem services. One Earth. 4, 1278–1285 (2021).

    Article 
    ADS 

    Google Scholar 

  • Graham, N. A. J. et al. Human disruption of coral reef trophic structure. Curr. Biol. 27, 231–236 (2017).

    Article 
    CAS 

    Google Scholar 

  • Sherman, C. S., Heupel, M. R., Moore, S. K., Chin, A. & Simpfendorfer, C. A. When sharks are away rays will play: effects of top predator removal in coral reef ecosystems. Mar. Ecol. Prog. Ser. 641, 145–157 (2020).

    Article 
    ADS 

    Google Scholar 

  • Ruppert, J. L. W., Travers, M. J., Smith, L. L., Fortin, M.-J. & Meekan, M. G. Caught in the middle: combined Impacts of shark removal and coral loss on the fish communities of coral reefs. PLoS One. 8, e74648 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Last, P. R. et al. Rays of the World. (CSIRO Publishing, 2016).

  • Ebert, D. A., Dando, M. & Fowler, S. Sharks of the World. 2nd edn, 608 (Princeton University Press, 2021).

  • Heupel, M. R., Lédée, E. J. I. & Simpfendorer, C. A. Telemetry reveals spatial separation of co-occurring reef sharks. Mar. Ecol. Prog. Ser. 589, 179–192 (2018).

    Article 
    ADS 

    Google Scholar 

  • Heupel, M. R., Papastamatiou, Y. P., Espinoza, M., Green, M. E. & Simpfendorfer, C. A. Reef shark science – key questions and future directions. Front. Mar. Sci. 6, 12 (2019).

    Article 

    Google Scholar 

  • Roff, G., Brown, C. J., Priest, M. A. & Mumby, P. J. Decline of coastal apex shark populations over the past half century. Commun. Biol. 1, 223 (2018).

    Article 

    Google Scholar 

  • Williams, J. J., Papastamatiou, Y. P., Caselle, J. E., Bradley, D. & Jacoby, D. M. P. Mobile marine predators: an understudied source of nutrients to coral reefs in an unfished atoll. Proc. R. Soc. B. 285, 20172456 (2018).

    Article 

    Google Scholar 

  • Heithaus, M. R., Wirsing, A. J. & Dill, L. M. The ecological importance of intact top-predator populations: a synthesis of 15 years of research in a seagrass ecosystem. Mar. Freshw. Res. 63, 1039–1050 (2012).

    Article 

    Google Scholar 

  • Peel, L. R. et al. Stable isotope analyses reveal unique trophic role of reef manta rays (Mobula alfredi) at a remote coral reef. R. Soc. Open Sci. 6, 190599 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • O’Shea, O. R., Thums, M., van Keulen, M. & Meekan, M. Bioturbation by stingrays at Ningaloo Reef, Western Australia. Mar. Freshw. Res. 63, 189–197 (2012).

    Article 

    Google Scholar 

  • Takeuchi, S. & Tamaki, A. Assessment of benthic disturbance associated with stingray foraging for ghost shrimp by aerial survey over an intertidal sandflat. Continental Shelf Res. 84, 139–157 (2014).

    Article 
    ADS 

    Google Scholar 

  • Burkholder, D. A., Heithaus, M. R., Fourqurean, J. W., Wirsing, A. & Dill, L. M. Patterns of top-down control in a seagrass ecosystem: could a roving apex predator induce a behaviour-mediated trophic cascade? J. Anim. Ecol. 82, 1192–1202 (2013).

    Article 

    Google Scholar 

  • Creel, S. & Christianson, D. Relationships between direct predation and risk effects. TRENDS Ecol. Evolution. 23, 194–201 (2008).

    Article 

    Google Scholar 

  • Ward-Paige, C. A. et al. Large-scale absence of sharks on reefs in the greater-Caribbean: a footprint of human presence. PLoS One. 5, e11968 (2010).

    Article 
    ADS 

    Google Scholar 

  • Espinoza, M., Cappo, M., Heupel, M. R., Tobin, A. J. & Simpfendorfer, C. A. Quantifying shark distribution patterns and species-habitat associations: implications of marine park zoning. PLoS One. 9, e106885 (2014).

    Article 
    ADS 

    Google Scholar 

  • Graham, N. A., Spalding, M. D. & Sheppard, C. R. Reef shark declines in remote atolls highlight the need for multi-faceted conservation action. Aquat. Conserv.: Mar. Freshw. Ecosyst. 20, 543–548 (2010).

    Article 

    Google Scholar 

  • Nadon, M. O. et al. Re-creating missing population baselines for Pacific reef sharks. Conserv. Biol. 26, 493–503 (2012).

    Article 

    Google Scholar 

  • MacNeil, M. A. et al. Global status and conservation potential of reef sharks. Nature 583, 801–806 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Dulvy, N. K. et al. Overfishing drives over one-third of all sharks and rays toward a global extinction crisis. Curr. Biol. 31, 1–15 (2021).

    Article 

    Google Scholar 

  • Walls, R. H. L. & Dulvy, N. K. Eliminating the dark matter of data deficiency by predicting the conservation status of Northeast Atlantic and Mediterranean Sea sharks and rays. Biol. Conserv. 246, 108459 (2020).

    Article 

    Google Scholar 

  • Yan, H. F. et al. Overfishing and habitat loss drives range contraction of iconic marine fishes to near extinction. Science Adv. 7, eabb6026, (2021).

  • Butchart, S. H. M. et al. Using Red List Indices to measure progress towards the 2010 target and beyond. Philos. Trans. R. Soc. B 360, 255–268 (2005).

    Article 
    CAS 

    Google Scholar 

  • Sherman, C. S. et al. Taeniura lymma. The IUCN Red List of Threatened Species, eT116850766A116851089 (2021). 10.2305/IUCN.UK.2021-1.RLTS.T116850766A116851089.en

  • Pacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–571 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cardeñosa, D. et al. Small fins, large trade: a snapshot of the species composition of low-value shark fins in the Hong Kong markets. Anim. Conserv. 23, 203–211 (2019).

    Article 

    Google Scholar 

  • Haque, A. B. & Spaet, J. L. Y. Trade in threatened elasmobranchs in the Bay of Bengal, Bangladesh. Fish. Res. 243, 106059 (2021).

    Article 

    Google Scholar 

  • Alcala, A. C. & Russ, G. R. A direct test of the effects of protective management on abundance and yield of tropical marine resources. ICES J. Mar. Sci. 47, 40–47 (1990).

    Article 

    Google Scholar 

  • Serrano, A. et al. Effects of anti-trawling artificial reefs on ecological indicators of inner shelf fish and invertebrate communities in the Cantabrian Sea (southern Bay of Biscay). J. Mar. Biol. Assoc. U. Kingd. 91, 623–633 (2011).

    Article 

    Google Scholar 

  • Cortés, E. Perspectives on the intrinsic rate of population growth. Methods Ecol. Evolution. 7, 1136–1145 (2016).

    Article 

    Google Scholar 

  • McClenachan, L., Cooper, A. B. & Dulvy, N. K. Rethinking trade-driven extinction risk in marine and terrestrial megafauna. Curr. Biol. 26, 1–7 (2016).

    Article 

    Google Scholar 

  • Tamburello, N., Cote, I. M. & Dulvy, N. K. Energy and the scaling of animal space use. Am. Naturalist 186, 196–211 (2015).

    Article 

    Google Scholar 

  • Dulvy, N. K. et al. Challenges and priorities in shark and ray conservation. Curr. Biol. 27, R565–R572 (2017).

    Article 
    CAS 

    Google Scholar 

  • Davidson, L. N. K. & Dulvy, N. K. Global marine protected areas to prevent extinctions. Ecol. Evolution. 1, 1–6 (2017).

    Google Scholar 

  • Pauly, D., Zeller, D. & Palomares, M. L. D. Sea Around Us Concepts, Design and Data, <http://seaaroundus.org> (2021).

  • Simpfendorfer, C. A. & Dulvy, N. K. Bright spots of sustainable shark fishing. Curr. Biol. 27, R83–R102 (2017).

    Article 

    Google Scholar 

  • Booth, H., Squires, D. & Milner-Gulland, E. J. The mitigation hierarchy for sharks: a risk-based framework for reconciling trade-offs between shark conservation and fisheries objectives. Fish. Fish. 21, 269–289 (2019).

    Article 

    Google Scholar 

  • Grorud-Colvert, K. et al. The MPA Guide: A framework to achieve global goals for the ocean. Science 373, eabf0861 (2021).

    Article 
    CAS 

    Google Scholar 

  • Enright, S. R., Meneses-Orellana, R. & Keith, I. The Eastern Tropical Pacific Marine Corridor (CMAR): The emergence of a voluntary regional cooperation mechanism for the conservation and sustainable use of marine biodiversity within a fragmented regional ocean governance landscape. Front. Mar. Sci. 8, 674825 (2021).

    Article 

    Google Scholar 

  • Chin, A., Kyne, P. M., Walker, T. I. & McAuley, R. B. An integrated risk assessment for climate change: analysing the vulnerability of sharks and rays on Australia’s Great Barrier Reef. Glob. Change Biol. 16, 1936–1953 (2010).

    Article 
    ADS 

    Google Scholar 

  • Dwyer, R. G. et al. Individual and population benefits of marine reserves for reef sharks. Curr. Biol. 30, 480–489 (2020).

    Article 
    CAS 

    Google Scholar 

  • Speed, C. W., Cappo, M. & Meekan, M. G. Evidence for rapid recovery of shark populations within a coral reef marine protected area. Biol. Conserv. 220, 308–319 (2018).

    Article 

    Google Scholar 

  • Mizrahi, M. I., Diedrich, A., Weeks, R. & Pressey, R. L. A systematic review of the socioeconomic factors that influence how marine protected areas impact on ecosystems and livelihoods. Soc. Nat. Resour. 32, 4–20 (2019).

    Article 

    Google Scholar 

  • IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. 1148 (Bonn, Germany, 2019).

  • Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hanh, T. T. H. & Boonstra, W. J. What prevents small-scale fishing and aquaculture households from engaging in alternative livelihoods? A case study in the Tam Giang lagoon, Viet Nam. Ocean Coast. Manag. 182, 104943 (2019).

    Article 

    Google Scholar 

  • Ahmed, N., Troell, M., Allison, E. H. & Muir, J. F. Prawn postlarvae fishing in coastal Bangladesh: challenges for sustainable livelihoods. Mar. Policy. 34, 218–227 (2010).

    Article 

    Google Scholar 

  • Prasetyo, A. P. et al. Shark and ray trade in and out of Indonesia: addressing knowledge gaps on the path to sustainability. Mar. Policy. 133, 104714 (2021).

    Article 

    Google Scholar 

  • McClanahan, T., Polunin, N. & Done, T. Ecological states and the resilience of coral reefs. Conserv. Ecol. 6, 18 (2002).

    Google Scholar 

  • Bellwood, D. R., Hughes, T. P. & Hoey, A. S. Sleeping functional group drives coral-reef recovery. Curr. Biol. 16, 2434–2439 (2006).

    Article 
    CAS 

    Google Scholar 

  • Cinner, J. E. et al. Vulnerability of coastal communities to key impacts of climate change on coral reef fisheries. Glob. Environ. Change. 22, 12–20 (2012).

    Article 
    ADS 

    Google Scholar 

  • Víe, J.-C., Hilton-Taylor, C. & Stuart, S. N. Wildlife in a Changing World – An analysis of the 2008 IUCN Red List of Threatened Species. 180 (Gland, Switzerland, 2009).

  • Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).

    Article 

    Google Scholar 

  • Sherley, R. B. et al. Estimating IUCN Red List population reduction: JARA – A decision-support tool applied to pelagic sharks. Conserv. Lett. 13, e12688 (2019).

    Google Scholar 

  • IUCN Red List. Threats Classification Scheme (Version 3.2), <https://www.iucnredlist.org/resources/threat-classification-scheme> (2021).

  • Salafsky, N. et al. A standard lexicon for biodiversity conservation: unified classifications of threats and actions. Conserv. Biol. 22, 897–911 (2008).

    Article 

    Google Scholar 

  • Moore, A. Chiloscyllium arabicum. The IUCN Red List of Threatened Species 2017, e.T161426A109902537 (2017). 10.2305/IUCN.UK.2017-2.RLTS.T161426A109902537.en

  • Sadovy de Mitcheson, Y. J. et al. Valuable but vulnerable: Over-fishing and under-management continue to threaten groupers so what now? Mar. Policy. 116, 103909 (2020).

    Article 

    Google Scholar 

  • R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2021).

  • Regression Models for Ordinal Data v. 2019.12.10 (CRAN, 2019).

  • Econometric Tools for Performance and Risk Analysis v. 2.0.4 (2020).

  • Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).

    Article 

    Google Scholar 

  • Akinwande, M. O., Dikko, H. G. & Samson, A. Variance inflation factor: As a condition for the inclusion of suppressor variable(s) in regression analysis. Open J. Stat. 5, 754–767 (2015).

    Article 

    Google Scholar 

  • Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods Res. 33, 261–304 (2004).

    Article 
    MathSciNet 

    Google Scholar 

  • Plots Coefficients from Fitted Models v. 1.2.8 (2022).

  • Fisheries and Aquaculture Software. FishStatJ – Software for Fishery and Aquaculture Statistical Time Series., <http://www.fao.org/fishery/> (2020).

  • Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. & Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 15, 1609–1625 (2002).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1175/1520-0442(2002)0152.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1175%2F1520-0442%282002%29015%3C1609%3AAIISAS%3E2.0.CO%3B2″ aria-label=”Article reference 75″ data-doi=”10.1175/1520-0442(2002)0152.0.CO;2″>Article 
    ADS 

    Google Scholar 

  • NASA Ocean Biology (OB.DAAC). Mean annual sea surface chlorophyll-a concentration for the period 2009-2013 (composite dataset created by UNEP-WCMC). Data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua Ocean Colour website (NASA OB.DAAC, Greenbelt, MD, USA), <http://oceancolor.gsfc.nasa.gov/cgi/l3> (2014).

  • General Bathymetric Chart of the Oceans. GEBCO_2014 Grid. version 20150318. www.gebco.net (2015).

  • XGBoost: A Scalable Tree Boosting System v. 1.4.1.1 (In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). New York, NY, USA: ACM, 2016).

  • Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    Article 
    CAS 

    Google Scholar 

  • ArcGIS Pro 2.7.0 (Environmental Systems Research Institute) (2020).

  • Ferreira, L. C. & Simpfendorer, C. Galeocerdo cuvier. The IUCN Red List of Threatened Species 2019, e.T39378A2913541 (2019).

  • Beta Regression v. 3.1-4 (2021).

  • Butchart, S. H. et al. Improvements to the Red List Index. PLoS ONE. 2, e140 (2007).

    Article 
    ADS 

    Google Scholar 

  • Sherman, C. S. et al. Half a century of rising extinction risk of coral reef sharks and rays, sammsherman27/CoralReefSharkRayIUCN: Data and Code Used in Sherman et al. Half a century of rising extinction risk of coral reef sharks and rays v1.0.0. https://doi.org/10.5281/zenodo.7267904 (2022).


  • Source: Ecology - nature.com

    Modelling the impact of non-pharmaceutical interventions on the spread of COVID-19 in Saudi Arabia

    Water masses shape pico-nano eukaryotic communities of the Weddell Sea