Plaisance, L., Caley, M. J., Brainard, R. E. & Knowlton, N. The diversity of coral reefs: what are we missing? PLoS One. 6, e25026 (2011).
Google Scholar
Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).
Google Scholar
Mora, C. et al. Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes. PLoS Biol. 9, e1000606 (2011).
Google Scholar
Burke, L., Reytar, K., Spalding, M. & Perry, A. Reefs at Risk Revisited. 130 pp. (World Resources Institute, Washington, D.C., 2011).
Hicks, C. C., Graham, N. A. J., Maire, E. & Robinson, J. P. W. Secure local aquatic food systems in the face of declining coral reefs. One Earth. 4, 1214–1216 (2021).
Google Scholar
Cinner, J. E. et al. Gravity of human impacts mediates coral reef conservation gains. PNAS 115, E6116–E6125 (2018).
Google Scholar
Eddy, T. D. et al. Global decline in capacity of coral reefs to provide ecosystem services. One Earth. 4, 1278–1285 (2021).
Google Scholar
Graham, N. A. J. et al. Human disruption of coral reef trophic structure. Curr. Biol. 27, 231–236 (2017).
Google Scholar
Sherman, C. S., Heupel, M. R., Moore, S. K., Chin, A. & Simpfendorfer, C. A. When sharks are away rays will play: effects of top predator removal in coral reef ecosystems. Mar. Ecol. Prog. Ser. 641, 145–157 (2020).
Google Scholar
Ruppert, J. L. W., Travers, M. J., Smith, L. L., Fortin, M.-J. & Meekan, M. G. Caught in the middle: combined Impacts of shark removal and coral loss on the fish communities of coral reefs. PLoS One. 8, e74648 (2013).
Google Scholar
Last, P. R. et al. Rays of the World. (CSIRO Publishing, 2016).
Ebert, D. A., Dando, M. & Fowler, S. Sharks of the World. 2nd edn, 608 (Princeton University Press, 2021).
Heupel, M. R., Lédée, E. J. I. & Simpfendorer, C. A. Telemetry reveals spatial separation of co-occurring reef sharks. Mar. Ecol. Prog. Ser. 589, 179–192 (2018).
Google Scholar
Heupel, M. R., Papastamatiou, Y. P., Espinoza, M., Green, M. E. & Simpfendorfer, C. A. Reef shark science – key questions and future directions. Front. Mar. Sci. 6, 12 (2019).
Google Scholar
Roff, G., Brown, C. J., Priest, M. A. & Mumby, P. J. Decline of coastal apex shark populations over the past half century. Commun. Biol. 1, 223 (2018).
Google Scholar
Williams, J. J., Papastamatiou, Y. P., Caselle, J. E., Bradley, D. & Jacoby, D. M. P. Mobile marine predators: an understudied source of nutrients to coral reefs in an unfished atoll. Proc. R. Soc. B. 285, 20172456 (2018).
Google Scholar
Heithaus, M. R., Wirsing, A. J. & Dill, L. M. The ecological importance of intact top-predator populations: a synthesis of 15 years of research in a seagrass ecosystem. Mar. Freshw. Res. 63, 1039–1050 (2012).
Google Scholar
Peel, L. R. et al. Stable isotope analyses reveal unique trophic role of reef manta rays (Mobula alfredi) at a remote coral reef. R. Soc. Open Sci. 6, 190599 (2019).
Google Scholar
O’Shea, O. R., Thums, M., van Keulen, M. & Meekan, M. Bioturbation by stingrays at Ningaloo Reef, Western Australia. Mar. Freshw. Res. 63, 189–197 (2012).
Google Scholar
Takeuchi, S. & Tamaki, A. Assessment of benthic disturbance associated with stingray foraging for ghost shrimp by aerial survey over an intertidal sandflat. Continental Shelf Res. 84, 139–157 (2014).
Google Scholar
Burkholder, D. A., Heithaus, M. R., Fourqurean, J. W., Wirsing, A. & Dill, L. M. Patterns of top-down control in a seagrass ecosystem: could a roving apex predator induce a behaviour-mediated trophic cascade? J. Anim. Ecol. 82, 1192–1202 (2013).
Google Scholar
Creel, S. & Christianson, D. Relationships between direct predation and risk effects. TRENDS Ecol. Evolution. 23, 194–201 (2008).
Google Scholar
Ward-Paige, C. A. et al. Large-scale absence of sharks on reefs in the greater-Caribbean: a footprint of human presence. PLoS One. 5, e11968 (2010).
Google Scholar
Espinoza, M., Cappo, M., Heupel, M. R., Tobin, A. J. & Simpfendorfer, C. A. Quantifying shark distribution patterns and species-habitat associations: implications of marine park zoning. PLoS One. 9, e106885 (2014).
Google Scholar
Graham, N. A., Spalding, M. D. & Sheppard, C. R. Reef shark declines in remote atolls highlight the need for multi-faceted conservation action. Aquat. Conserv.: Mar. Freshw. Ecosyst. 20, 543–548 (2010).
Google Scholar
Nadon, M. O. et al. Re-creating missing population baselines for Pacific reef sharks. Conserv. Biol. 26, 493–503 (2012).
Google Scholar
MacNeil, M. A. et al. Global status and conservation potential of reef sharks. Nature 583, 801–806 (2020).
Google Scholar
Dulvy, N. K. et al. Overfishing drives over one-third of all sharks and rays toward a global extinction crisis. Curr. Biol. 31, 1–15 (2021).
Google Scholar
Walls, R. H. L. & Dulvy, N. K. Eliminating the dark matter of data deficiency by predicting the conservation status of Northeast Atlantic and Mediterranean Sea sharks and rays. Biol. Conserv. 246, 108459 (2020).
Google Scholar
Yan, H. F. et al. Overfishing and habitat loss drives range contraction of iconic marine fishes to near extinction. Science Adv. 7, eabb6026, (2021).
Butchart, S. H. M. et al. Using Red List Indices to measure progress towards the 2010 target and beyond. Philos. Trans. R. Soc. B 360, 255–268 (2005).
Google Scholar
Sherman, C. S. et al. Taeniura lymma. The IUCN Red List of Threatened Species, eT116850766A116851089 (2021). 10.2305/IUCN.UK.2021-1.RLTS.T116850766A116851089.en
Pacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–571 (2021).
Google Scholar
Cardeñosa, D. et al. Small fins, large trade: a snapshot of the species composition of low-value shark fins in the Hong Kong markets. Anim. Conserv. 23, 203–211 (2019).
Google Scholar
Haque, A. B. & Spaet, J. L. Y. Trade in threatened elasmobranchs in the Bay of Bengal, Bangladesh. Fish. Res. 243, 106059 (2021).
Google Scholar
Alcala, A. C. & Russ, G. R. A direct test of the effects of protective management on abundance and yield of tropical marine resources. ICES J. Mar. Sci. 47, 40–47 (1990).
Google Scholar
Serrano, A. et al. Effects of anti-trawling artificial reefs on ecological indicators of inner shelf fish and invertebrate communities in the Cantabrian Sea (southern Bay of Biscay). J. Mar. Biol. Assoc. U. Kingd. 91, 623–633 (2011).
Google Scholar
Cortés, E. Perspectives on the intrinsic rate of population growth. Methods Ecol. Evolution. 7, 1136–1145 (2016).
Google Scholar
McClenachan, L., Cooper, A. B. & Dulvy, N. K. Rethinking trade-driven extinction risk in marine and terrestrial megafauna. Curr. Biol. 26, 1–7 (2016).
Google Scholar
Tamburello, N., Cote, I. M. & Dulvy, N. K. Energy and the scaling of animal space use. Am. Naturalist 186, 196–211 (2015).
Google Scholar
Dulvy, N. K. et al. Challenges and priorities in shark and ray conservation. Curr. Biol. 27, R565–R572 (2017).
Google Scholar
Davidson, L. N. K. & Dulvy, N. K. Global marine protected areas to prevent extinctions. Ecol. Evolution. 1, 1–6 (2017).
Pauly, D., Zeller, D. & Palomares, M. L. D. Sea Around Us Concepts, Design and Data, <http://seaaroundus.org> (2021).
Simpfendorfer, C. A. & Dulvy, N. K. Bright spots of sustainable shark fishing. Curr. Biol. 27, R83–R102 (2017).
Google Scholar
Booth, H., Squires, D. & Milner-Gulland, E. J. The mitigation hierarchy for sharks: a risk-based framework for reconciling trade-offs between shark conservation and fisheries objectives. Fish. Fish. 21, 269–289 (2019).
Google Scholar
Grorud-Colvert, K. et al. The MPA Guide: A framework to achieve global goals for the ocean. Science 373, eabf0861 (2021).
Google Scholar
Enright, S. R., Meneses-Orellana, R. & Keith, I. The Eastern Tropical Pacific Marine Corridor (CMAR): The emergence of a voluntary regional cooperation mechanism for the conservation and sustainable use of marine biodiversity within a fragmented regional ocean governance landscape. Front. Mar. Sci. 8, 674825 (2021).
Google Scholar
Chin, A., Kyne, P. M., Walker, T. I. & McAuley, R. B. An integrated risk assessment for climate change: analysing the vulnerability of sharks and rays on Australia’s Great Barrier Reef. Glob. Change Biol. 16, 1936–1953 (2010).
Google Scholar
Dwyer, R. G. et al. Individual and population benefits of marine reserves for reef sharks. Curr. Biol. 30, 480–489 (2020).
Google Scholar
Speed, C. W., Cappo, M. & Meekan, M. G. Evidence for rapid recovery of shark populations within a coral reef marine protected area. Biol. Conserv. 220, 308–319 (2018).
Google Scholar
Mizrahi, M. I., Diedrich, A., Weeks, R. & Pressey, R. L. A systematic review of the socioeconomic factors that influence how marine protected areas impact on ecosystems and livelihoods. Soc. Nat. Resour. 32, 4–20 (2019).
Google Scholar
IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. 1148 (Bonn, Germany, 2019).
Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).
Google Scholar
Hanh, T. T. H. & Boonstra, W. J. What prevents small-scale fishing and aquaculture households from engaging in alternative livelihoods? A case study in the Tam Giang lagoon, Viet Nam. Ocean Coast. Manag. 182, 104943 (2019).
Google Scholar
Ahmed, N., Troell, M., Allison, E. H. & Muir, J. F. Prawn postlarvae fishing in coastal Bangladesh: challenges for sustainable livelihoods. Mar. Policy. 34, 218–227 (2010).
Google Scholar
Prasetyo, A. P. et al. Shark and ray trade in and out of Indonesia: addressing knowledge gaps on the path to sustainability. Mar. Policy. 133, 104714 (2021).
Google Scholar
McClanahan, T., Polunin, N. & Done, T. Ecological states and the resilience of coral reefs. Conserv. Ecol. 6, 18 (2002).
Bellwood, D. R., Hughes, T. P. & Hoey, A. S. Sleeping functional group drives coral-reef recovery. Curr. Biol. 16, 2434–2439 (2006).
Google Scholar
Cinner, J. E. et al. Vulnerability of coastal communities to key impacts of climate change on coral reef fisheries. Glob. Environ. Change. 22, 12–20 (2012).
Google Scholar
Víe, J.-C., Hilton-Taylor, C. & Stuart, S. N. Wildlife in a Changing World – An analysis of the 2008 IUCN Red List of Threatened Species. 180 (Gland, Switzerland, 2009).
Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).
Google Scholar
Sherley, R. B. et al. Estimating IUCN Red List population reduction: JARA – A decision-support tool applied to pelagic sharks. Conserv. Lett. 13, e12688 (2019).
IUCN Red List. Threats Classification Scheme (Version 3.2), <https://www.iucnredlist.org/resources/threat-classification-scheme> (2021).
Salafsky, N. et al. A standard lexicon for biodiversity conservation: unified classifications of threats and actions. Conserv. Biol. 22, 897–911 (2008).
Google Scholar
Moore, A. Chiloscyllium arabicum. The IUCN Red List of Threatened Species 2017, e.T161426A109902537 (2017). 10.2305/IUCN.UK.2017-2.RLTS.T161426A109902537.en
Sadovy de Mitcheson, Y. J. et al. Valuable but vulnerable: Over-fishing and under-management continue to threaten groupers so what now? Mar. Policy. 116, 103909 (2020).
Google Scholar
R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2021).
Regression Models for Ordinal Data v. 2019.12.10 (CRAN, 2019).
Econometric Tools for Performance and Risk Analysis v. 2.0.4 (2020).
Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
Google Scholar
Akinwande, M. O., Dikko, H. G. & Samson, A. Variance inflation factor: As a condition for the inclusion of suppressor variable(s) in regression analysis. Open J. Stat. 5, 754–767 (2015).
Google Scholar
Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods Res. 33, 261–304 (2004).
Google Scholar
Plots Coefficients from Fitted Models v. 1.2.8 (2022).
Fisheries and Aquaculture Software. FishStatJ – Software for Fishery and Aquaculture Statistical Time Series., <http://www.fao.org/fishery/> (2020).
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. & Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 15, 1609–1625 (2002).
Google Scholar
NASA Ocean Biology (OB.DAAC). Mean annual sea surface chlorophyll-a concentration for the period 2009-2013 (composite dataset created by UNEP-WCMC). Data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua Ocean Colour website (NASA OB.DAAC, Greenbelt, MD, USA), <http://oceancolor.gsfc.nasa.gov/cgi/l3> (2014).
General Bathymetric Chart of the Oceans. GEBCO_2014 Grid. version 20150318. www.gebco.net (2015).
XGBoost: A Scalable Tree Boosting System v. 1.4.1.1 (In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). New York, NY, USA: ACM, 2016).
Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).
Google Scholar
ArcGIS Pro 2.7.0 (Environmental Systems Research Institute) (2020).
Ferreira, L. C. & Simpfendorer, C. Galeocerdo cuvier. The IUCN Red List of Threatened Species 2019, e.T39378A2913541 (2019).
Beta Regression v. 3.1-4 (2021).
Butchart, S. H. et al. Improvements to the Red List Index. PLoS ONE. 2, e140 (2007).
Google Scholar
Sherman, C. S. et al. Half a century of rising extinction risk of coral reef sharks and rays, sammsherman27/CoralReefSharkRayIUCN: Data and Code Used in Sherman et al. Half a century of rising extinction risk of coral reef sharks and rays v1.0.0. https://doi.org/10.5281/zenodo.7267904 (2022).
Source: Ecology - nature.com