in

Cooperative adaptive management of the Nile River with climate and socio-economic uncertainties

  • IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  • Wigley, T. M. L. & Raper, S. C. B. Natural variability of the climate system and detection of the greenhouse effect. Nature 344, 324–327 (1990).

    Article 

    Google Scholar 

  • Crowley, J. T. Causes of climate change over the past 1000 years. Science 289, 270–277 (2000).

    Article 
    CAS 

    Google Scholar 

  • Wang, W. C., Yung, Y. L., Lacis, A. A., Mo, T. A. & Hansen, J. E. Greenhouse effects due to man-made perturbations of trace gases. Science 194, 685–690 (1976).

    Article 
    CAS 

    Google Scholar 

  • Paris Agreement (United Nations Framework Convention on Climate Change, 2015).

  • Rio+20 United Nations Conference on Sustainable Development The Future We Want: Outcome Document of the United Nations Conference on Sustainable Development (United Nations, 2012).

  • Basheer, M. et al. Collaborative management of the Grand Ethiopian Renaissance Dam increases economic benefits and resilience. Nat. Commun. 12, 5622 (2021).

    Article 
    CAS 

    Google Scholar 

  • Agreement between the Republic of the Sudan and the United Arab Republic for the Full Utilization of the Nile Waters (International Water Law Project, 1959); http://internationalwaterlaw.org/documents/regionaldocs/uar_sudan.html

  • Cascão, A. E. & Nicol, A. GERD: new norms of cooperation in the Nile Basin? Water Int. 41, 550–573 (2016).

    Article 

    Google Scholar 

  • Salman, S. The Grand Ethiopian Renaissance Dam: the road to the declaration of principles and the Khartoum document. Water Int. 41, 512–527 (2016).

    Article 

    Google Scholar 

  • Tawfik, R. The Grand Ethiopian Renaissance Dam: a benefit-sharing project in the Eastern Nile? Water Int. 41, 574–592 (2016).

    Article 

    Google Scholar 

  • Wheeler, K. G., Jeuland, M., Hall, J. W., Zagona, E. & Whittington, D. Understanding and managing new risks on the Nile with the Grand Ethiopian Renaissance Dam. Nat. Commun. https://doi.org/10.1038/s41467-020-19089-x (2020).

  • Wheeler, K. et al. Exploring cooperative transboundary river management strategies for the Eastern Nile Basin. Water Resour. Res. https://doi.org/10.1029/2017WR022149 (2018).

  • Wheeler, K. G. et al. Cooperative filling approaches for the Grand Ethiopian Renaissance Dam. Water Int. 41, 611–634 (2016).

    Article 

    Google Scholar 

  • Basheer, M. et al. Quantifying and evaluating the impacts of cooperation in transboundary river basins on the water–energy–food nexus: the Blue Nile Basin. Sci. Total Environ. 630, 1309–1323 (2018).

    Article 
    CAS 

    Google Scholar 

  • Basheer, M. Cooperative operation of the Grand Ethiopian Renaissance Dam reduces Nile riverine floods. River Res. Appl. 47, 805–814 (2021).

    Article 

    Google Scholar 

  • Elagib, N. A. & Basheer, M. Would Africa’s largest hydropower dam have profound environmental impacts? Environ. Sci. Pollut. Res. 28, 8936–8944 (2021).

    Article 
    CAS 

    Google Scholar 

  • Joint Statement of Egypt, Ethiopia, Sudan, the United States and the World Bank (United States Department of the Treasury, 2020); https://home.treasury.gov/news/press-releases/sm891

  • Edrees, M. Letter dated 11 June 2021 from the Permanent Representative of Egypt to the United Nations addressed to the Secretary-Genera (United Nations, 2021); https://digitallibrary.un.org/record/3931750?ln=en

  • Amde, T. A. Letter dated 14 May 2020 from the Permanent Representative of Ethiopia to the United Nations addressed to the President of the Security Council (United Nations, 2020); https://digitallibrary.un.org/record/3862715?ln=en

  • Taye, M. T., Willems, P. & Block, P. Implications of climate change on hydrological extremes in the Blue Nile Basin: a review. J. Hydrol. Reg. Stud. 4, 280–293 (2015).

    Article 

    Google Scholar 

  • Di Baldassarre, G. et al. Future hydrology and climate in the River Nile Basin: a review. Hydrol. Sci. J. 56, 199–211 (2011).

    Article 

    Google Scholar 

  • Bhattacharjee, P. S. & Zaitchik, B. F. Perspectives on CMIP5 model performance in the Nile River headwaters regions. Int. J. Climatol. 35, 4262–4275 (2015).

    Article 

    Google Scholar 

  • Haasnoot, M., Kwakkel, J. H., Walker, W. E. & ter Maat, J. Dynamic adaptive policy pathways: a method for crafting robust decisions for a deeply uncertain world. Glob. Environ. Change 23, 485–498 (2013).

    Article 

    Google Scholar 

  • Hui, R., Herman, J., Lund, J. & Madani, K. Adaptive water infrastructure planning for nonstationary hydrology. Adv. Water Resour. 118, 83–94 (2018).

    Article 

    Google Scholar 

  • Marchau, V. A. W. J., Walker, W. E., Bloemen, P. J. T. M. & Popper, S. W. (eds) Decision Making under Deep Uncertainty: From Theory to Practice (Springer, 2019).

  • Smith, M. et al. Adaptation’s Thirst: Accelerating the Convergence of Water and Climate Action (Global Commission on Adaptation, 2019).

  • Hallegatte, S. Strategies to adapt to an uncertain climate change. Glob. Environ. Change 19, 240–247 (2009).

    Article 

    Google Scholar 

  • Reed, P. M. et al. Multisector dynamics: advancing the science of complex adaptive human–Earth systems. Earth’s Future 10, e2021EF002621 (2022).

    Article 

    Google Scholar 

  • Walker, W. E., Haasnoot, M. & Kwakkel, J. H. Adapt or perish: a review of planning approaches for adaptation under deep uncertainty. Sustainability 5, 955–979 (2013).

    Article 

    Google Scholar 

  • Kwadijk, J. C. J. et al. Using adaptation tipping points to prepare for climate change and sea level rise: a case study in the Netherlands. WIREs Clim. Change 1, 729–740 (2010).

    Article 

    Google Scholar 

  • Kwakkel, J. H., Walker, W. E. & Marchau, V. Adaptive airport strategic planning. Eur. J. Transp. Infrastruct. Res. 10, 249–273 (2010).

  • Kwakkel, J. H., Haasnoot, M. & Walker, W. E. Developing dynamic adaptive policy pathways: a computer-assisted approach for developing adaptive strategies for a deeply uncertain world. Climatic Change 132, 373–386 (2015).

    Article 

    Google Scholar 

  • Zeff, H. B., Herman, J. D., Reed, P. M. & Characklis, G. W. Cooperative drought adaptation: integrating infrastructure development, conservation, and water transfers into adaptive policy pathways. Water Resour. Res. https://doi.org/10.1002/2016WR018771 (2016).

  • Fletcher, S., Lickley, M. & Strzepek, K. Learning about climate change uncertainty enables flexible water infrastructure planning. Nat. Commun. 10, 1782 (2019).

    Article 

    Google Scholar 

  • Cohen, J. S. & Herman, J. D. Dynamic adaptation of water resources systems under uncertainty by learning policy structure and indicators. Water Resour. Res. 57, e2021WR030433 (2021).

    Article 

    Google Scholar 

  • Ricalde, I. et al. Assessing tradeoffs in the design of climate change adaptation strategies for water utilities in Chile. J. Environ. Manage. 302, 114035 (2022).

    Article 

    Google Scholar 

  • Pachos, K., Huskova, I., Matrosov, E., Erfani, T. & Harou, J. J. Trade-off informed adaptive and robust real options water resources planning. Adv. Water Resour. 161, 104117 (2022).

    Article 

    Google Scholar 

  • Gold, D. F., Reed, P. M., Gorelick, D. E. & Characklis, G. W. Power and pathways: exploring robustness, cooperative stability, and power relationships in regional infrastructure investment and water supply management portfolio pathways. Earth’s Future 10, e2021EF002472 (2022).

  • Beh, E. H. Y., Maier, H. & Dandy, G. C. Adaptive, multiobjective optimal sequencing approach for urban water supply augmentation under deep uncertainty. Water Resour. Res. https://doi.org/10.1002/2014WR016254 (2015).

  • O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Article 

    Google Scholar 

  • Wainwright, C. M. et al. ‘Eastern African Paradox’ rainfall decline due to shorter not less intense Long Rains. NPJ Clim. Atmos. Sci. 2, 34 (2019).

    Article 

    Google Scholar 

  • Rowell, D. P., Booth, B. B. B., Nicholson, S. E. & Good, P. Reconciling past and future rainfall trends over East Africa. J. Clim. 28, 9768–9788 (2015).

    Article 

    Google Scholar 

  • Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article 

    Google Scholar 

  • KC, S. & Lutz, W. The human core of the Shared Socioeconomic Pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017).

    Article 

    Google Scholar 

  • Crespo Cuaresma, J. Income projections for climate change research: a framework based on human capital dynamics. Glob. Environ. Change 42, 226–236 (2017).

    Article 

    Google Scholar 

  • Water Level (Copernicus Global Land Service, 2022); https://land.copernicus.eu/global/products/wl

  • Inselberg, A. in Trends in Interactive Visualization: State-of-the-Art Survey (eds Liere, R. et al.) 49–78 (Springer, 2009).

  • Goulden, M., Conway, D. & Persechino, A. Adaptation to climate change in international river basins in Africa: a review. Hydrol. Sci. J. 54, 805–828 (2009).

    Article 

    Google Scholar 

  • Dasgupta, P. The Economics of Biodiversity: The Dasgupta Review (HM Treasury, 2021).

  • François, B., Vrac, M., Cannon, A. J., Robin, Y. & Allard, D. Multivariate bias corrections of climate simulations: which benefits for which losses? Earth Syst. Dyn. 11, 537–562 (2020).

    Article 

    Google Scholar 

  • Cannon, A. J., Sobie, S. R. & Murdock, T. Q. Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes? J. Clim. 28, 6938–6959 (2015).

    Article 

    Google Scholar 

  • Mehrotra, R. & Sharma, A. A resampling approach for correcting systematic spatiotemporal biases for multiple variables in a changing climate. Water Resour. Res. 55, 754–770 (2019).

    Article 

    Google Scholar 

  • Vrac, M. & Friederichs, P. Multivariate-intervariable, spatial, and temporal-bias correction. J. Clim. 28, 218–237 (2015).

    Article 

    Google Scholar 

  • Beck, H. E. et al. MSWEP v2 global 3-hourly 0.1° precipitation: methodology and quantitative assessment. Bull. Am. Meteorol. Soc. 100, 473–500 (2019).

    Article 

    Google Scholar 

  • Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).

    Article 

    Google Scholar 

  • Walker, D. P., Marsham, J. H., Birch, C. E., Scaife, A. A. & Finney, D. L. Common mechanism for interannual and decadal variability in the East African Long Rains. Geophys. Res. Lett. 47, e2020GL089182 (2020).

  • King, J. A. & Washington, R. Future changes in the Indian Ocean Walker Circulation and links to Kenyan rainfall. J. Geophys. Res. Atmos. 126, e2021JD034585 (2021).

    Article 

    Google Scholar 

  • Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. FAO Irrigation and Drainage Paper: Crop Evapotranspiration (FAO, 1998).

  • Liang, X., Lettenmaier, D. P., Wood, E. F. & Burges, S. J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. 99, 14415–14428 (1994).

  • David, C. H. et al. River network routing on the NHDPlus dataset. J. Hydrometeorol. 12, 913–934 (2011).

    Article 

    Google Scholar 

  • Lin, P. et al. Global reconstruction of naturalized river flows at 2.94 million reaches. Water Resour. Res. 55, 6499–6516 (2019).

    Article 

    Google Scholar 

  • Development of the Eastern Nile Water Simulation Model (Deltares, 2013).

  • Gill, M. A. Flood routing by the Muskingum method. J. Hydrol. 36, 353–363 (1978).

    Article 

    Google Scholar 

  • Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 27, 2171–2186 (2013).

    Article 

    Google Scholar 

  • Tomlinson, J. E., Arnott, J. H. & Harou, J. J. A water resource simulator in Python. Environ. Model. Softw. 126, 104635 (2020).

    Article 

    Google Scholar 

  • Wurbs, R. A. Generalized Models of River System Development and Management (IntechOpen, 2011).

  • Basheer, M., Sulieman, R. & Ribbe, L. Exploring management approaches for water and energy in the data-scarce Tekeze-Atbara Basin under hydrologic uncertainty. Int. J. Water Resour. Dev. 37, 182–207 (2021).

    Article 

    Google Scholar 

  • Basheer, M. & Elagib, N. A. Sensitivity of water–energy nexus to dam operation: a water–energy productivity concept. Sci. Total Environ. 616–617, 918–926 (2018).

    Article 

    Google Scholar 

  • Basheer, M. et al. Filling Africa’s largest hydropower dam should consider engineering realities. One Earth 3, 277–281 (2020).

    Article 

    Google Scholar 

  • Jeuland, M., Wu, X. & Whittington, D. Infrastructure development and the economics of cooperation in the Eastern Nile. Water Int. https://doi.org/10.1080/02508060.2017.1278577 (2017).

  • Lofgren, H., Lee, R., Robinson, S., Thomas, M. & El-Said, M. A Standard Computable General Equilibrium (CGE) Model in GAMS (International Food Policy Research Institute, 2002).

  • Armington, P. S. A theory of demand for products distinguished by place of production. Staff Pap. 16, 159–178 (1969).

    Article 

    Google Scholar 

  • Siddig, K., Elagra, S., Grethe, H. & Mubarak, A. A Post-separation Social Accounting Matrix for the Sudan (International Food Policy Research Institute, 2018); https://doi.org/10.2499/1024320695

  • Al-Riffai, P. et al. A Disaggregated Social Accounting Matrix: 2010/11 for Policy Analysis in Egypt (International Food Policy Research Institute, 2016); http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/130736

  • Ahmed, H. A., Tebekew, T. & Thurlow, J. 2010/11 Social Accounting Matrix for Ethiopia: A Nexus Project SAM (International Food Policy Research Institute, 2017); http://ebrary.ifpri.org/utils/getfile/collection/p15738coll2/id/131505/filename/131720.pdf

  • Chepeliev, M. Gtap-Power data base: version 10. J. Glob. Econ. Anal. 5, 110–137 (2020).

    Article 

    Google Scholar 

  • Jiang, L. & O’Neill, B. C. Global urbanization projections for the Shared Socioeconomic Pathways. Glob. Environ. Change 42, 193–199 (2017).

    Article 

    Google Scholar 

  • Fouré, J., Bénassy-Quéré, A. & Fontagné, L. Modelling the world economy at the 2050 horizon. Econ. Transit. Inst. Change 21, 617–654 (2013).

    Google Scholar 

  • Gidden, M. J. et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 12, 1443–1475 (2019).

    Article 
    CAS 

    Google Scholar 

  • Knox, S., Meier, P., Yoon, J. & Harou, J. J. A Python framework for multi-agent simulation of networked resource systems. Environ. Model. Softw. 103, 16–28 (2018).

    Article 

    Google Scholar 

  • Deb, K. & Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18, 577–601 (2014).

    Article 

    Google Scholar 

  • Hadka, D. Platypus. GitHub https://github.com/Project-Platypus/Platypus (2016).

  • Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M. & Da Fonseca, V. G. Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7, 117–132 (2003).

    Article 

    Google Scholar 

  • Basheer, M. et al. Balancing national economic policy outcomes for sustainable development. Nat. Commun. 13, 5041 (2022).

    Article 
    CAS 

    Google Scholar 

  • Breiman, L. Random Forests. Mach. Learn. 45, 5–32 (2001).

    Article 

    Google Scholar 

  • Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  • Basheer, M., Nechifor, V., Calzadilla, A., Harou, J. J., Data related to a study on adaptive management of Nile infrastructure. Zenodo https://doi.org/10.5281/zenodo.5914757 (2022).


  • Source: Resources - nature.com

    Changes in interactions over ecological time scales influence single-cell growth dynamics in a metabolically coupled marine microbial community

    Rhizobial migration toward roots mediated by FadL-ExoFQP modulation of extracellular long-chain AHLs