in

Accelerated land surface greening caused by earlier permafrost thawing


Abstract

Persistent and above-average warming has advanced the start of spring permafrost thawing, intensifying climate warming through carbon feedbacks. However, the extent to which variations in spring permafrost thawing contribute to greening trends in permafrost-affected areas (i.e., increases in vegetation greenness) over time remains unclear, limiting our understanding of the ecological consequences of permafrost degradation. Analyzing 40-year freeze/thaw data and multiple satellite-derived greenness indicators, we identify widespread increases in the sensitivity of spring greenness to spring permafrost thawing based on moving-window analyses, indicating that advances in spring permafrost thawing have played a progressively stronger role in promoting spring greening, particularly in boreal forests and tundra regions underlain by continuous permafrost. In addition to the region-specific climate and permafrost conditions, we uncover biogeophysical pathways accounting for the increase in sensitivity of spring greenness to spring permafrost thawing, including reduced albedo, earlier vegetation phenology, and enhanced soil moisture infiltration. Notably, state-of-the-art Dynamic Global Vegetation Models consistently underestimate both the magnitude and variability of sensitivity of spring greenness to spring permafrost thawing. These findings highlight the temporal changes in vegetation responses to freeze-thaw dynamics, necessitating improved model projections concurrent with climate change.

Similar content being viewed by others

Tundra vegetation change and impacts on permafrost

Vegetation greening amplifies shallow soil temperature warming on the Tibetan Plateau

Warming-independent shortened snow cover duration enhances vegetation greening across northern permafrost region

Data availability

All data used in this study are freely available from public repositories. Freeze-thaw state data are provided by FT-ESDR (https://nsidc.org/data/nsidc-0477/versions/5). Satellite-based greenness indicators include kNDVI (https://www.environment.snu.ac.kr/data/longterm-vi), LCSPP v3.2 (https://zenodo.org/records/14568024), BESS v2.0 GPP (https://www.environment.snu.ac.kr/bessv2), GOSIF, CSIF, and VODCA v2 (https://researchdata.tuwien.at/records/t74ty-tcx62). Meteorological data are available from TerraClimate (https://www.climatologylab.org/). Global monthly CO2 records are available from NOAA. ERA5-Land datasets are available from Google Earth Engine and Copernicus Climate Data Store (https://cds.climate.copernicus.eu/). In situ surface temperature records are available from GTN-P (https://gtnp.arcticportal.org/). Active layer thickness data are provided by ESA. Soil organic carbon and nitrogen data are available from SoilGrids (https://www.isric.org/explore/soilgrids). Maximum root depth is available from EartH2Observe (http://www.earth2observe.eu/). Global canopy height data are available from ETH Global Canopy Height 2020 (https://code.earthengine.google.com/126c172d63e7ce780596c8d26f06d384). Land cover datasets include TEOW biomes (https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world), MODIS MCD12C1 IGBP (https://lpdaac.usgs.gov/), MOSEV dNBR (https://zenodo.org/records/4265209), and permafrost type data from NSIDC. Source data are provided with this paper.

Code availability

All data analyses were performed using R v.4.3.1. The codes used in this study are available at Zenodo [https://doi.org/10.5281/zenodo.17543943]95.

References

  1. Heijmans, M. M. P. D. Tundra vegetation change and impacts on permafrost. Nat. Rev. Earth Environ. 3, 68–84 (2022).

  2. Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G. & Nemani, R. R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997).

    Google Scholar 

  3. Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    Google Scholar 

  4. Pearson, R. G. et al. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Change 3, 673–677 (2013).

    Google Scholar 

  5. Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).

    Google Scholar 

  6. Xu, X., Riley, W. J., Koven, C. D., Jia, G. & Zhang, X. Earlier leaf-out warms air in the north. Nat. Clim. Change 10, 370–375 (2020).

    Google Scholar 

  7. Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    Google Scholar 

  8. Walvoord, M. A. & Kurylyk, B. L. Hydrologic impacts of thawing permafrost—a review. Vadose Zone J. 15, 1–20 (2016).

    Google Scholar 

  9. Webb, E. E. et al. Permafrost thaw drives surface water decline across lake-rich regions of the Arctic. Nat. Clim. Change 12, 841–846 (2022).

    Google Scholar 

  10. Biskaborn, B. K. et al. Permafrost is warming at a global scale. Nat. Commun. 10, 264 (2019).

    Google Scholar 

  11. Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J. & Romanovsky, V. E. The changing thermal state of permafrost. Nat. Rev. Earth Environ. 3, 10–23 (2022).

    Google Scholar 

  12. Natali, S. M., Schuur, E. A. G. & Rubin, R. L. Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. J. Ecol. 100, 488–498 (2012).

    Google Scholar 

  13. Schuur, E. A. G. & Mack, M. C. Ecological response to permafrost Thaw and consequences for local and global ecosystem services. Annu. Rev. Ecol. Evol. Syst. 49, 279–301 (2018).

    Google Scholar 

  14. Luo, S., Wang, J., Pomeroy, J. W. & Lyu, S. Freeze–Thaw changes of seasonally frozen ground on the Tibetan Plateau from 1960 to 2014. J. Clim. 33, 9427–9446 (2020).

    Google Scholar 

  15. Li, X., Jin, R., Pan, X., Zhang, T. & Guo, J. Changes in the near-surface soil freeze–thaw cycle on the Qinghai-Tibetan Plateau. Int. J. Appl. Earth Observ. Geoinf. 17, 33–42 (2012).

    Google Scholar 

  16. Wang, J. & Liu, D. Vegetation green-up date is more sensitive to permafrost degradation than climate change in spring across the northern permafrost region. Glob. Change Biol. 28, 1569–1582 (2022).

    Google Scholar 

  17. Jin, X.-Y. et al. Impacts of climate-induced permafrost degradation on vegetation: a review. Adv. Clim. Change Res. 12, 29–47 (2021).

    Google Scholar 

  18. Wrona, F. J. et al. Transitions in Arctic ecosystems: Ecological implications of a changing hydrological regime. JGR Biogeosci. 121, 650–674 (2016).

    Google Scholar 

  19. Yang, M., Nelson, F. E., Shiklomanov, N. I., Guo, D. & Wan, G. Permafrost degradation and its environmental effects on the Tibetan Plateau: a review of recent research. Earth-Sci. Rev. 103, 31–44 (2010).

    Google Scholar 

  20. Buermann, W. et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 562, 110–114 (2018).

    Google Scholar 

  21. Piao, S. et al. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat. Commun. 5, 5018 (2014).

    Google Scholar 

  22. Jorgenson, M. T., Shur, Y. L. & Pullman, E. R. Abrupt increase in permafrost degradation in Arctic Alaska. Geophys. Res. Lett. 33, 2005GL024960 (2006).

    Google Scholar 

  23. Berner, L. T. et al. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun. 11, 4621 (2020).

    Google Scholar 

  24. Grünberg, I., Wilcox, E. J., Zwieback, S., Marsh, P. & Boike, J. Linking tundra vegetation, snow, soil temperature, and permafrost. Biogeosciences 17, 4261–4279 (2020).

    Google Scholar 

  25. Miller, P. A. & Smith, B. Modelling tundra vegetation response to recent Arctic warming. AMBIO 41, 281–291 (2012).

    Google Scholar 

  26. Tang, S. et al. Resonance between projected Tibetan Plateau surface darkening and Arctic climate change. Sci. Bull. 69, 367–374 (2024).

    Google Scholar 

  27. Wang, J. & Liu, D. Deciphering the biophysical impact of permafrost greening on summer surface offset. Earth’s. Future 12, e2023EF004077 (2024).

    Google Scholar 

  28. Pistone, K., Eisenman, I. & Ramanathan, V. Observational determination of albedo decrease caused by vanishing Arctic sea ice. Proc. Natl. Acad. Sci. USA 111, 3322–3326 (2014).

    Google Scholar 

  29. Dragoni, D. et al. Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-central Indiana, USA. Glob. Change Biol. 17, 886–897 (2011).

    Google Scholar 

  30. Richardson, A. D. et al. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiol. 29, 321–331 (2009).

    Google Scholar 

  31. Li, J. et al. Weakening warming on spring freeze–thaw cycle caused greening Earth’s third pole. Proc. Natl. Acad. Sci. USA 121, e2319581121 (2024).

    Google Scholar 

  32. Bui, M. T., Lu, J. & Nie, L. A review of hydrological models applied in the permafrost-dominated Arctic region. Geosciences 10, 401 (2020).

    Google Scholar 

  33. Shu, S., Jain, A. K., Koven, C. D. & Mishra, U. Estimation of permafrost SOC stock and turnover time using a land surface model with vertical heterogeneity of permafrost soils. Glob. Biogeochem. Cycles 34, e2020GB006585 (2020).

    Google Scholar 

  34. Wang, T. et al. Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau. Sci. Adv. 6, eaaz3513 (2020).

    Google Scholar 

  35. Hjort, J. et al. Impacts of permafrost degradation on infrastructure. Nat. Rev. Earth Environ. 3, 24–38 (2022).

    Google Scholar 

  36. Loranty, M. M. et al. Reviews and syntheses: changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences 15, 5287–5313 (2018).

    Google Scholar 

  37. Turetsky, M. R. et al. Permafrost collapse is accelerating carbon release. Nature 569, 32–34 (2019).

    Google Scholar 

  38. Strauss, J. et al. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth-Sci. Rev. 172, 75–86 (2017).

    Google Scholar 

  39. Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change 7, 263–267 (2017).

    Google Scholar 

  40. Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 9, 312–318 (2016).

    Google Scholar 

  41. Neumann, R. B. et al. Warming effects of spring rainfall increase methane emissions from thawing permafrost. Geophys. Res. Lett. 46, 1393–1401 (2019).

    Google Scholar 

  42. Pilyugina, P. et al. A physics-informed machine learning framework for permafrost stability assessment. IEEE Access 13, 96423–96433 (2025).

    Google Scholar 

  43. Kim, Y., Kimball, J. S., Glassy, J. & Du, J. An extended global Earth system data record on daily landscape freeze–thaw status determined from satellite passive microwave remote sensing. Earth Syst. Sci. Data 9, 133–147 (2017).

    Google Scholar 

  44. Muñoz-Sabater, J. et al. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13, 4349–4383 (2021).

    Google Scholar 

  45. Chen, X. et al. Different responses of surface freeze and thaw phenology changes to warming among Arctic permafrost types. Remote Sens. Environ. 272, 112956 (2022).

    Google Scholar 

  46. Kim, Y., Kimball, J. S., Zhang, K. & McDonald, K. C. Satellite detection of increasing Northern Hemisphere non-frozen seasons from 1979 to 2008: implications for regional vegetation growth. Remote Sens. Environ. 121, 472–487 (2012).

    Google Scholar 

  47. Li, J., Wu, C., Peñuelas, J., Ran, Y. & Zhang, Y. The start of frozen dates over northern permafrost regions with the changing climate. Glob. Change Biol. 29, 4556–4568 (2023).

    Google Scholar 

  48. Camps-Valls, G. et al. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 7, eabc7447 (2021).

    Google Scholar 

  49. Chen, J. M. et al. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nat. Commun. 10, 4259 (2019).

    Google Scholar 

  50. Porcar-Castell, A. et al. Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science. Nat. Plants 7, 998–1009 (2021).

    Google Scholar 

  51. Hu, Z. et al. Decoupling of greenness and gross primary productivity as aridity decreases. Remote Sens. Environ. 279, 113120 (2022).

    Google Scholar 

  52. Ding, Z., Peng, J., Qiu, S. & Zhao, Y. Nearly half of global vegetated area experienced inconsistent vegetation growth in terms of greenness, cover, and productivity. Earth’s. Future 8, e2020EF001618 (2020).

    Google Scholar 

  53. Jeong, S. et al. Persistent global greening over the last four decades using novel long-term vegetation index data with enhanced temporal consistency. Remote Sens. Environ. 311, 114282 (2024).

    Google Scholar 

  54. Fang, J. et al. A long-term reconstruction of a global photosynthesis proxy over 1982–2023. Sci. Data 12, 372 (2025).

    Google Scholar 

  55. Lian, X. et al. Diminishing carryover benefits of earlier spring vegetation growth. Nat. Ecol. Evol. 8, 218–228 (2024).

    Google Scholar 

  56. Li, B. et al. BESSv2.0: A satellite-based and coupled-process model for quantifying long-term global land–atmosphere fluxes. Remote Sens. Environ. 295, 113696 (2023).

    Google Scholar 

  57. Li, X. & Xiao, J. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sens. 11, 517 (2019).

    Google Scholar 

  58. Zhang, Y., Joiner, J., Alemohammad, S. H., Zhou, S. & Gentine, P. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 15, 5779–5800 (2018).

    Google Scholar 

  59. Zotta, R.-M. et al. VODCA v2: multi-sensor, multi-frequency vegetation optical depth data for long-term canopy dynamics and biomass monitoring. Earth Syst. Sci. Data 16, 4573–4617 (2024).

    Google Scholar 

  60. Friedlingstein, P. et al. Global Carbon Budget 2023. Earth Syst. Sci. Data 15, 5301–5369 (2023).

    Google Scholar 

  61. Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).

    Google Scholar 

  62. Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).

    Google Scholar 

  63. Li, W. et al. Widespread increasing vegetation sensitivity to soil moisture. Nat. Commun. 13, 3959 (2022).

    Google Scholar 

  64. Pinzon, J. & Tucker, C. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).

    Google Scholar 

  65. Shen, M. et al. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai–Tibetan Plateau. Agric. For. Meteorol. 189–190, 71–80 (2014).

    Google Scholar 

  66. Chen, J. et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 91, 332–344 (2004).

    Google Scholar 

  67. Wang, J., Liu, D., Ciais, P. & Peñuelas, J. Decreasing rainfall frequency contributes to earlier leaf onset in northern ecosystems. Nat. Clim. Change 12, 386–392 (2022).

    Google Scholar 

  68. Wu, C. et al. Increased drought effects on the phenology of autumn leaf senescence. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01464-9 (2022).

    Google Scholar 

  69. Wang, X. & Wu, C. Estimating the peak of growing season (POS) of China’s terrestrial ecosystems. Agric. For. Meteorol. 278, 107639 (2019).

    Google Scholar 

  70. Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl. Acad. Sci. USA 114, 10572–10577 (2017).

    Google Scholar 

  71. Lang, N., Jetz, W., Schindler, K. & Wegner, J. D. A high-resolution canopy height model of the Earth. Nat. Ecol. Evol. 7, 1778–1789 (2023).

    Google Scholar 

  72. Obu, J. et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Sci. Rev. 193, 299–316 (2019).

    Google Scholar 

  73. Poggio, L. et al. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. Soil 7, 217–240 (2021).

    Google Scholar 

  74. Alonso-González, E. & Fernández-García, V. MOSEV: a global burn severity database from MODIS (2000–2020). Earth Syst. Sci. Data 13, 1925–1938 (2021).

    Google Scholar 

  75. Brown, J., Ferrians, O., Heginbottom, J. A. & Melnikov, E. Circum-Arctic map of permafrost and ground-ice conditions. Version 2. 10.7265/skbg-kf16 (2002).

  76. Chen, L. et al. Leaf senescence exhibits stronger climatic responses during warm than during cold autumns. Nat. Clim. Change 10, 777–780 (2020).

    Google Scholar 

  77. He, L. et al. Lagged precipitation effects on plant production across terrestrial biomes. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-025-02806-4 (2025).

    Google Scholar 

  78. Wang, S. et al. Recent global decline of CO 2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300 (2020).

    Google Scholar 

  79. Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).

    Google Scholar 

  80. Yang, G., Crowther, T. W., Lauber, T., Zohner, C. M. & Smith, G. R. A globally consistent negative effect of edge on aboveground forest biomass. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-025-02840-2 (2025).

    Google Scholar 

  81. Wolkovich, E. M. et al. A simple explanation for declining temperature sensitivity with warming. Glob. Change Biol. 27, 4947–4949 (2021).

    Google Scholar 

  82. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Google Scholar 

  83. Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T. & Zeileis, A. Conditional variable importance for random forests. BMC Bioinform. 9, 307 (2008).

    Google Scholar 

  84. Wang, X. et al. Enhanced habitat loss of the Himalayan endemic flora driven by warming-forced upslope tree expansion. Nat. Ecol. Evol. 6, 890–899 (2022).

    Google Scholar 

  85. Berdugo, M., Gaitán, J. J., Delgado-Baquerizo, M., Crowther, T. W. & Dakos, V. Prevalence and drivers of abrupt vegetation shifts in global drylands. Proc. Natl. Acad. Sci. USA 119, e2123393119 (2022).

    Google Scholar 

  86. Wright, M. N. & Ziegler, A. ranger: a fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Soft. 77, 1–17 (2017).

  87. Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2, 56–67 (2020).

  88. Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4, 598–604 (2014).

    Google Scholar 

  89. Sugihara, G. et al. Detecting causality in complex ecosystems. Science 338, 496–500 (2012).

    Google Scholar 

  90. Shen, M. et al. Can changes in autumn phenology facilitate earlier green-up date of northern vegetation?. Agric. For. Meteorol. 291, 108077 (2020).

    Google Scholar 

  91. Wu, C. et al. Contrasting responses of autumn-leaf senescence to daytime and night-time warming. Nat. Clim. Change 8, 1092–1096 (2018).

    Google Scholar 

  92. Bagozzi, R. P. & Yi, Y. Specification, evaluation, and interpretation of structural equation models. J. Acad. Mark. Sci. 40, 8–34 (2012).

    Google Scholar 

  93. Gao, S. et al. An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas. Nat. Ecol. Evol. 6, 397–404 (2022).

    Google Scholar 

  94. Rosseel, Y. lavaan: an R package for structural equation modeling. J. Stat. Soft. 48, 1–36 (2012).

  95. Hua, H., Wang, J. & Wu, C. Accelerated land surface greening caused by earlier permafrost thawing. Zenodo 10.5281/ZENODO.17543942 (2025).

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (42125101, W2412014). J.W. was funded by the National Natural Science Foundation of China (42571037) and “Kezhen and Bingwei” Young Scientist Program of IGSNRR. C.M.Z. was funded by SNF Ambizione grant PZ00P3_193646. J.P. was funded by the TED2021-132627B-I00 grant funded by the Spanish MCIN, AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR, the Fundación Ramón Areces project CIVP20A6621 and the Catalan government grants SGR221-1333 and AGAUR2023 CLIMA 00118. We also appreciate the funding from the Science and Technology Program of Guangdong (No. 2024B1212070012).

Author information

Authors and Affiliations

Authors

Contributions

C.W. designed the research. H.H. and J.W. wrote the first draft of the manuscript and performed the analyses. C.M.Z. and J.P. discussed the research design, interpretation, and manuscript revision. Y.R. provided methodological support. All authors assessed the analyses and contributed to improving the manuscript.

Corresponding author

Correspondence to
Chaoyang Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Andreas Dietz, who co-reviewed with Martina Wenzl; Steven Cumming, and Tingting Xu for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Hua, H., Wang, J., Zohner, C.M. et al. Accelerated land surface greening caused by earlier permafrost thawing.
Nat Commun (2025). https://doi.org/10.1038/s41467-025-67644-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41467-025-67644-1


Source: Ecology - nature.com

Triploidy drives vector capacity and expansion of the parthenogenetic tick Haemaphysalis longicornis

Climate and sedimentary structure drive deep labile carbon accumulation in alpine wetlands

Back to Top