in

Carbon dynamics of a controlled peatland rewetting experiment in the Norwegian boreal zone


Abstract

A controlled peatland rewetting experiment was conducted on two adjacent drained peatland sites in southeastern Norway. Eddy covariance monitoring of CO2 and CH4 fluxes at both sites began in 2019. In 2021, the Treatment Site was rewetted while the Control Site remained drained. Using nine environmental variables and the processed flux data as training data, Bayesian Additive Regression Tree (BART) models were used to generate annual flux balances for CO2 and CH4. The 4-year mean annual flux at the Control Site was 17.3 ± 10 g CO2-C m− 2 yr− 1 and 4.6 ± 0.1 g CH4-C m− 2 yr− 1. At the Treatment Site, the 2-year mean annual flux before the rewetting was 12.2 ± 3.8 g CO2-C m− 2 yr− 1 and 1.8 ± 0.04 g CH4-C m− 2 yr− 1. In the first year after rewetting the annual flux was 53.3 ± 13 g CO2-C m− 2 yr− 1 and 3.8 ± 0.3 g CH4-C m− 2 yr− 1, and in the second year after rewetting the annual flux was 41.2 ± 18 g CO2-C m− 2 yr− 1 and 3.4 ± 0.4 g CH4-C m− 2 yr− 1. BART counterfactual modeling was able to estimate the effect of the rewetting on CO2 and CH4 fluxes. Two years after the rewetting, the BART counterfactual modeling estimated that the cumulative fluxes had increased by 80.3 ± 49 g CO2-C m− 2 and 3.4 ± 0.47 g CH4-C m− 2 because of the rewetting. Carbon flux monitoring of both sites is ongoing as the Control Site remains drained and the soil and vegetation at the Treatment Site continues to adjust to the altered hydrological regime after rewetting.

Similar content being viewed by others

Temporally dynamic carbon dioxide and methane emission factors for rewetted peatlands

Overriding water table control on managed peatland greenhouse gas emissions

Quantifying the fluxes of carbon loss from an undrained tropical peatland ecosystem in Indonesia

Data availability

The BART gap-filled flux data, the nine environmental variables that were used as the BART predictors, and the water table depth data are all available for download at the following DOI: https://doi.org/10.5281/zenodo.17552123.

References

  1. Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the last glacial maximum. Geophys. Res. Lett. 37, L13402. https://doi.org/10.1029/2010GL043584 (2010).

    Google Scholar 

  2. Nichols, J. E. & Peteet, D. M. Rapid expansion of Northern peatlands and doubled estimates of carbon storage. Nat. Geosci. 12, 917–921. https://doi.org/10.1038/s41561-019-0454-z (2019).

    Google Scholar 

  3. Frolking, S. et al. Roulet, N. Peatlands in earth’s 21st century climate system. Environ. Rev. 19, 371–396. https://doi.org/10.1139/A11-014 (2011).

    Google Scholar 

  4. Leifeld, J. & Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 9, 1071. https://doi.org/10.1038/s41467-018-03406 (2018).

    Google Scholar 

  5. Günther, A. et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat. Commun. 11, 1644. https://doi.org/10.1038/s41467-020-15499-z (2020).

    Google Scholar 

  6. Bryn, A., Strand, G. H., Angeloff, M. & Rekdal, Y. Land cover in Norway based on an area frame survey of vegetation types. Norsk Geografisk Tidsskrift – Nor. J. Geography 72. 3, 131–145. https://doi.org/10.1080/00291951.2018.1468356

  7. Moen, A., Lynstad, A. & Øien, D. I. Norway. In Joosten, H., Tanneberger, F. & Moen, A. (eds.) 2017. Mires and Peatlands of Europe: Status, Distribution and Conservation. Stuttgart: Schweizerbart Science. (2017).

  8. Kløve, B., Berglund, K., Berglund, Ö., Weldon, S. & Maljanen, M. Future options for cultivated nordic peat soils: can land management and rewetting control greenhouse gas emissions? Environ. Sci. Policy. 69, 85–93. https://doi.org/10.1016/j.envsci.2016.12.017 (2017).

    Google Scholar 

  9. Johansen, A. The extent and use of peatlands in Norway. In: Global Peat Resources (ed. E. Lappalainen), 113–117. (1996).

  10. Johansen, A. Myrarealer Og torvressurser i Norge. Jordforsk Rapp. 1, 1–37 (1997). Mire area and peat resources in Norway.

    Google Scholar 

  11. Moen, A. & Øien, D. I. Faktaark Fra to prosjekter med vurdering av truethet Og vernestatus for våtmark (myr Og kjelde) i Norge. [Information from two projects with evaluation of impact factors and status for protection of wetlands (mires and springs) in Norway]. NTNU Vitensk Museum not notat. 4, 1–62 (2011).

    Google Scholar 

  12. National Inventory Report Norway. Greenhouse Gas Emissions 1990–2021: National Inventory Submission, submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol. (2023). https://unfccc.int/documents/627398

  13. Joosten, H. et al. Metoder for å Beregne Endring I Klimagassutslipp Ved Restaurering Av Myr. Naturhistorisk Rapport 10 (NTNU Vitenskapsmuseet, 2015).

  14. Grønlund, A., Hauge, A., Hovde, A. & Rasse, D. P. Carbon loss estaimtes from cultivated peat soils in norway: a comparison of three methods. Nutr. Cycl. Agroecosyst. 81, 157–167. https://doi.org/10.1007/s10705-008-9171-5 (2008).

    Google Scholar 

  15. Husby, V. Plan for the rewetting of wetlands in Norway. Miljø-Direktoratet. M-1903. (2020).

  16. Strack, M. & Zuback, Y. C. A. Annual carbon balance of a peatland 10 year following rewetting. Biogeosciences 10, 2885–2896. https://doi.org/10.5194/bg-10-2885-2013 (2013).

    Google Scholar 

  17. Weldon, S., Parmentier, F. J. W., Grønlund, A. & Silbernnoinen, H. Rewetting of bogs: the potential for carbon storage and reduction of greenhouse gas emissions. Norsk Institutt for Bioøkonomi. 2 (113), (2016).

  18. Waddington, J. M. & Day, S. M. Methane emissions from a peatland following rewetting. J. Phys. Res. 112, G03018. https://doi.org/10.1029/2007/JG000400 (2007).

    Google Scholar 

  19. Goodrich, J. P., Campbell, D. I., Roulet, N. T., Clearwater, M. J. & Schipper, L. A. Overriding control of methane flux Temporal variability by water table dynamics in a Southern hemisphere Raised bog. J. Geophys. Res. Biogeosciences. 120, 819–831. https://doi.org/10.1002/2014JG002844 (2015).

    Google Scholar 

  20. de Wit, H. A., Ledesma, J. L. J. & Futter, M. N. Aquatic DOC export from subartic Atlantic blanket bog in Norway is controlled by sea salt deposition, temperature, and precipitation. Biogeochemistry 127, 305–321. https://doi.org/10.1007/s10533-016-0182-z (2016).

    Google Scholar 

  21. Billett, M. F. et al. Linking land-atmosphere-stream carbon fluxes in a lowland peatland system. Global Biochem. Cycles. 18, GB1024. https://doi.org/10.1029/2003GB002058 (2004).

    Google Scholar 

  22. Drösler, M., Verchot, L. V., Freibauer, A. & Pan, G. Drained Inland Organic Soils. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. (2013).

  23. Beckebanze, L. et al. Lateral carbon export has low impact on the net ecosystem carbon balance of a polygonal tundra catchment. Biogeosciences 19, 3863–3876. https://doi.org/10.5194/bg-19-3863-2022 (2022).

    Google Scholar 

  24. Norge i Bilder Geodata AS. (2016). https://www.norgeibilder.no.

  25. Lovdata Regulations on the protection. of Regnåsen and Hisåsen nature reserve, Trysil municipality, Hedmark. (2022). https://lovdata.no/dokument/LF/forskrift/2017-06-21-885

  26. Ramberg, I. B., Bryhni, I. & Nøttvedt, A. The Making of a Land: Geology of Norway (Geological Society of Norway, 2007).

  27. Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).

    Google Scholar 

  28. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater,J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla,S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M.,… Thépaut, J. N. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society. 146(730), 1999–2049. https://doi.org/10.1002/qj.3803 (2020).

  29. Halvorsen, R. et al. Towards a systematics of ecodiversity: the EcoSyst framework. Glob. Ecol. Biogeogr. 29 (11), 1887–1906. https://doi.org/10.1111/geb.13164 (2020).

    Google Scholar 

  30. Muñoz-Sabater, J. et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data. 13, 4349–4383 (2021).

    Google Scholar 

  31. Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  32. Gu, L. et al. The fundamental equation of eddy covariance and its application in flux measurements. Agric. For. Meteorol. 152, 135–148. https://doi.org/10.1016/j.agrformet.2011.09.014 (2012).

    Google Scholar 

  33. Moncrieff, J., Clement, R., Finnigan, J., Meyers, T. & Averaging, Detrending, and filtering of eddy Co-variance time series. In Handbook of Micrometeorology Vol. 29 (eds Lee, X. et al.) (Springer, 2005). https://doi.org/10.1007/1-4020-2265-4_2.

    Google Scholar 

  34. Moncrieff, J. B. et al. Verhoel, A. A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J. Hydrol. 188–189. https://doi.org/10.1016/S0022-1694(96)03194-0 (1997).

  35. Webb, E. K., Pearman, G. I. & Leuning, R. Correction of flux measurements for density effects due to heat and water vapour transfer. Q. J. R. Meteorol. Soc. https://doi.org/10.1002/qj.49710644707 (1980).

    Google Scholar 

  36. Vickers, D. & Mahrt, L. Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Ocean. Technol. 14, 512–526 (1997).

  37. Foken, T. & Wichura, B. Agricultural and Forest Meteorology. Tools for Quality Assessment of Surface-Based Flux Measurements. Agricultural and Forest Meteorology, 78. (1996).

  38. Pirk, N. et al. Snow-Vegetation-atmosphere interactions in alpine tundra. Biogeosciences 20 (11), 2031–2047. https://doi.org/10.5194/bg-20-2031-2023 (2023).

    Google Scholar 

  39. Pirk, N. et al. Disaggregating the carbon exchange of degrading permafrost peatlands using bayesian deep learning. Geophys. Res. Lett. https://doi.org/10.1029/2024GL109283 (2024).

    Google Scholar 

  40. Chipman, H. A., George, E. I. & McCulloch, R. E. BART: Bayesian Additive Regression Trees. The Annals of Applied Statistics. 4(1), 266–298 https://doi.org/10.1214/09-AOAS285 (2010).

  41. Hill, J., Linero, A. & Murray, J. Bayesian additive regression trees: A review and look forward. Annual Rev. Stat. Its Application. 7, 251–278. https://doi.org/10.1146/annurev-statistics-031219-041110 (2020).

    Google Scholar 

  42. Vekura, H. et al. A widely-used eddy covariance gap-filling method creates systematic bias in carbon balance estimates. Sci. Rep. https://doi.org/10.1038/s41598-023-28827-2 (2023).

    Google Scholar 

  43. He, J. & Hahn, P. R. Stochastic tree ensembles for regularized nonlinear regression. J. Am. Stat. Assoc. 118, 551–570. https://doi.org/10.1080/01621459.2021.1942012 (2021).

    Google Scholar 

  44. Martin, O. A., Ravin, K. & Junpeng, L. Bayesian Modeling and Computation in Python Boca Ratón. ISBN 978-0-367-89436-8 (2021).

  45. Murphy, K. P. Probabilistic Machine Learning: Advanced Topics (MIT Press, 2023). http://probml.github.io/book2

  46. Abril-Pla, O. et al. Zinkov, R. PyMC: a modern, and comprehensive probabilistic programming framework in python. PeerJ Comput. Sci. 9, e1516. https://doi.org/10.7717/peerj-cs.1516 (2023).

    Google Scholar 

  47. Quiroga, M., Garay, P. G., Alonso, J. M. & Loyola, J. M. Martin, O.A. Bayesian additive regression trees for probabilistic programming, arXiv, (2023). https://doi.org/10.48550/arXiv.2206.03619

  48. Kyrkjeeide, M. O., Lunde, L. M. F., Lyngstad, A. & Molværsmyr, S. Restaurering av myr. Overvåking av tiltak i 2021. NINA Rapport 2051. Norsk institutt for naturforskning, Trondheim. (2021).

  49. QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation. (2025). Available at: https://qgis.org

  50. Nugent, K. A., Strachan, I. B., Strack, M., Roulet, N. T. & Rochefort, L. Multi-year net ecosystem carbon balance of a restored peatland reveals a return to carbon sink. Glob. Change Biol. 24, 5751–5768. https://doi.org/10.111/gcb.14449 (2018).

    Google Scholar 

  51. Kalhori, A. et al. Temporally driven carbon dioxide and methane emission factors for rewetted peatlands. Commun. Earth Environ. https://doi.org/10.1038/s43247-024-01226-9 (2024).

    Google Scholar 

  52. Wilson, D. et al. Multiyear greenhouse gas balances at a rewetted temperate peatland. Glob Chang. Biol. 22, 4080–4095 (2016).

    Google Scholar 

  53. Ojanen, P., Minkkinen, K., Alm, J. & Pentillä, T. Soil-atmosphere CO2, CH4 and N2O fluxes in boreal forestry-drained peatlands. For. Ecol. Manag. 260, 411–421. https://doi.org/10.1016/j.foreco.2010.04.036 (2010).

    Google Scholar 

  54. Lohila, A. et al. Greenhouse gas flux measurements in a forestry-drained peatland indicate a large carbon sink. Biogeosciences 8, 3203–3218 (2011).

    Google Scholar 

  55. Turetsky, M. R. et al. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Glob Chang. Biol. 20, 2183–2197 (2014).

    Google Scholar 

  56. Askaer, L., Elberling, B., Friborg, T., Jørgensen, C. J. & Hansen, B. U. Plant-mediated CH₄ transport and C gas dynamics quantified in-situ in a phalaris arundinacea-dominant wetland. Plant. Soil. 343, 287–301. https://doi.org/10.1007/s11104-011-0718-x (2011).

    Google Scholar 

  57. Zou, J. et al. Rewetting global wetlands effectively reduces major greenhouse gas emissions. Nat. Geosci. 15, 627–632. https://doi.org/10.1038/s41561-022-00989-0 (2022).

    Google Scholar 

  58. Dinsmore, K. J. et al. Role of the aquatic pathway in the carbon and greenhouse gas budgets of a peatland catchment. Glob. Change Biol. 16, 2750–2762. https://doi.org/10.1111/j.1365-2486.2009.02119.x (2010).

    Google Scholar 

  59. Haapalehto, T., Kotiaho, J. S., Matilainen, R. & Tahvanainen, T. The effects of long-term drainage and subsequent rewetting on water table level and pore water chemistry in boreal peatlands. J. Hydrol. 519, 1493–1505 (2014).

    Google Scholar 

  60. Stachowicz, M., Lynstad, A., Osuch, P. & Grygoruk, M. Hydrological response to rewetting of drained Peatlands- A case study of three Raised bogs in Norway. Land https://doi.org/10.3390/land14010142 (2025).

    Google Scholar 

  61. Koch, J. et al. Water-table-driven greenhouse gas emission estimates guide peatland restoration at National scale. Biogeosciences 20, 2387–2403. https://doi.org/10.5194/bg-20-2387-2023 (2023).

    Google Scholar 

  62. Evans, C. D. et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552. https://doi.org/10.1038/s41586-021-03523-1 (2021).

    Google Scholar 

  63. Tiemeyer, B. et al. A new methodology for organic soils in National greenhouse gas inventories: data synthesis, derivation and application. Ecol. Indic. 109 https://doi.org/10.1016/j.ecolind.2019.105838 (2020).

  64. Ojanen, P. & Minkkinen, K. The dependence of net soil CO2 emissions on water table depth in boreal peatlands drained for forestry. Int. Mire Conserv. Group. https://doi.org/10.19189/Ma (2019).

  65. Sikström, U. & Hökkä, H. Interactions between soil water conditions and forest stands in boreal forests with implications for ditch network maintenance. Silva Fennica 50(1), 1–29 (2016).

  66. Mozafari, B., Bruen, M., Donohue, S., Renou-Wilson, F. & O’Loughlin, F. Peatland dynamics: A review of process-based models and approaches. Sci. Total Environ. 877. https://doi.org/10.1016/j.scitotenv.2023.162890 (2023).

  67. Schaller, C., Hofer, B. & Klemm, O. Greenhouse gas exchange of a NW German Peatland, 18 years after rewetting. JGR Biogeosciences. (2022). https://doi.org/10.1029/2020JG005960

  68. PyMC Community. Bayesian Additive Regression Trees: Introduction. (2022). https://www.pymc.io/projects/examples/en/latest/case_studies/BART_introduction.html

Download references

Acknowledgements

Thank you to the US-Norway Fulbright Foundation for Educational Exchange for its support of this project through a 10-month student research stipend awarded to Michael Bekken. Thanks also to Magni Olsen Kyrkjeeide at NINA for assistance with the Sphagnum species, the PyMC community for their helpful reference guide introducing Bayesian Additive Regression Trees68, and Arnstein Berg for assisting in collecting DOC samples. Many thanks to Paul Christiansen for help with soil coring and Tenna Melissa Nielsen for help with chemical analyses. This study is a contribution to the strategic research initiative LATICE (UiO GEO103920), the Center for Biogeochemistry in the Anthropocene, as well as the Center for Computational and Data Science at the University of Oslo.

Funding

This work was funded by the Norwegian Environment Agency (Monitoring Peatland Greenhouse Gas Fluxes after Rewetting), the European Research Council (Project 101116083), and the Novo Nordisk Foundation through the Global Wetland Center (research grant NNF23OC0081089).

Author information

Authors and Affiliations

Authors

Contributions

P.L. and N.P. conceptualized the research and are responsible for the experimental design of the study. A.I. and K.S.L. assisted with selection of the analytical instruments that were used. N.P. and A.I. conducted the eddy covariance data processing. M.B., A.V., and J.K.K. collected the DOC samples and estimated lateral discharge rates. P.H. and A.B. conducted the vegetation mapping. B.O. collected and analyzed the peat samples. M.B. analyzed the eddy covariance data and lateral carbon flux data and wrote the original draft of the manuscript. All co-authors provided feedback on the manuscript.

Corresponding author

Correspondence to
Norbert Pirk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Bekken, M.A.H., Vatne, A., Larsen, P. et al. Carbon dynamics of a controlled peatland rewetting experiment in the Norwegian boreal zone.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-30836-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-30836-2

Keywords

  • Peatlands
  • Rewetting
  • Eddy covariance
  • Greenhouse gas fluxes
  • Terrestrial carbon cycling
  • Norway


Source: Ecology - nature.com

Deep-sea gas hydrate mounds and chemosynthetic fauna discovered at 3640 m on the Molloy Ridge, Greenland Sea

Genetic connectivity and admixture zones shape the spread of African swine fever in wild Boar populations in North-western Italy

Back to Top