Abstract
Pteridium aquilinum is a medicinally important fern with a limited range in northern Iran, increasingly threatened by climate change. Using morphological, genetic, and environmental data, we assessed differentiation, adaptive capacity, and vulnerability across 11 populations. Factor analysis of mixed data (FAMD) identified stipe indument, pinnule shape, and pinnae number as key traits distinguishing populations. Redundancy and association analyses (RDA/CCA) revealed strong links between both morphological and genetic variation and climatic gradients, particularly temperature and humidity, indicating local adaptation. Several SCoT loci were detected as adaptive outliers. Spatial PCA showed that variation is shaped by both global and local spatial factors, forming clines and local variants. Populations varied in sensitivity and adaptive capacity; populations 2, 3, 7, and 8 exhibited the lowest adaptive indices and highest vulnerability. Connectivity modeling suggested that while some populations (e.g., 2, 4, and 6) may maintain or slightly improve connectivity, others risk isolation under future climates. Structural equation modeling (SEM) indicated a positive genetic contribution to adaptation, while differential equation modeling (DEM) predicted logistic growth with temporary instability and genetic decline in vulnerable groups. Overall, findings highlight spatially uneven adaptive responses and recommend targeted conservation through connectivity enhancement, assisted gene flow, and ex-situ preservation of adaptive genotypes.
Similar content being viewed by others
Reduced within-population quantitative genetic variation is associated with climate harshness in maritime pine
The genetic architecture of repeated local adaptation to climate in distantly related plants
Climate-induced range shifts drive adaptive response via spatio-temporal sieving of alleles
Data availability
The datasets used and/ or analyzed during the current study available from the corresponding author on reasonable request.
References
IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability (Cambridge University Press, 2022).
Kelly, S. A., Panhuis, T. M. & Stoehr, A. M. Phenotypic plasticity: molecular mechanisms and adaptive significance. Compreh Physiol. 9 (2), 259–303 (2019).
Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
Scheiner, S. M., Barfield, M. & Holt, R. D. The genetics of phenotypic plasticity. XVII. Response to climate change. Ecol. Evol. 9 (22), 12375–12389 (2019).
Christmas, M. J., Breed, M. F. & Lowe, A. J. Constraints to and conservation implications for climate change adaptation in plants. Conserv. Genet. 17 (2), 305–320 (2016).
Corlett, R. T. Climate change and the evolution of the next generation of tropical forest trees. Perspect. Plant. Ecol. Evol. Syst. 13 (1), 163–172 (2011).
Guan, B., Gao, J., Chen, W., Gong, X. & Ge, G. The effects of climate change on landscape connectivity and genetic clusters in a small subtropical and warm-temperate tree. Front. Plant. Sci. 12, 671336 (2021).
Foden, W. B. et al. Climate change vulnerability assessment of species. Wiley Interdiscip Rev. Clim. Change. 4 (3), 159–181 (2013).
Mair, L., O’Brien, G. S. D. W. & Purvis, A. The forgotten half of the species-area relationship. Ecol. Appl. 31 (8), e02447 (2021).
Guisan, A., Edwards, T. C. & Hastie, T. Generalized linear and non-linear models for predicting species distributions. Ecol. Modell. 257, 1–17 (2013).
Moran, R. C. Diversity, biogeography, and floristics. In Biology and Evolution of Ferns and Lycophytes, 367–395 (Cambridge University Press, Cambridge, (2008).
Higgins, M. A. et al. Geological control of floristic composition in Amazonian forests. J. Biogeogr. 38 (11), 2136–2149 (2011).
Karst, J., Gilbert, B. & Lechowicz, M. J. Fern community assembly. Ecology 86 (9), 2473–2486 (2005).
Della, A. P. & Falkenberg, D. D. B. Pteridophytes as ecological indicators: an overview. Hoehnea 46 (1), e522018 (2019).
Sheidai, M., Alaeifar, M. & Koohdar, F. Integrating Geostatistical approaches into landscape genetics. Plant Mol. Biol. Rep. 1–12 (2025).
Christenhusz, M. et al. Pteridium Pinetorum (The IUCN Red List of Threatened Species, 2017).
CABI. Pteridium aquilinum (bracken). CABI Compendium. (2020).
Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to quaternary climate change. Science 292 (5517), 673–679 (2001).
Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant. Sci. 15 (12), 684–692 (2010).
Bradshaw, A. D. Unraveling phenotypic plasticity. New. Phytol. 170 (4), 644–648 (2006).
Reed, T. E., Schindler, D. E. & Waples, R. S. Phenotypic plasticity and evolution in population persistence. Conserv. Biol. 25 (1), 56–63 (2011).
Sheidai, M., Alaeifar, M. & Koohdar, F. PLS-SEM in plant ecological studies. Ecol. Modell. 500, 110–125 (2024).
Cruzan, M. B. & Hendrickson, E. C. Landscape genetics of plants. Plant. Commun. 1 (6), 100100 (2020).
Thurman, L. L., Stein, B. & Beever, E. A. Adaptive capacity of species to climate change. Front. Ecol. Environ. 18 (9), 499–507 (2020).
Fortini, L., Loehman, R. A. & Holsinger, L. M. Adaptive capacity of Pinus radiata. Glob Change Biol. 23 (1), 160–170 (2017).
Arnold, P. A., Kruuk, L. E. B. & Nicotra, A. B. Analyzing plant phenotypic plasticity. New. Phytol. 22 (3), 1235–1241 (2019).
Scheiner, S. M. Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol. Syst. 24, 35–68 (1993).
Thuiller, W. et al. Predicting global change impacts on plants. Perspect. Plant. Ecol. Evol. Syst. 9 (3–4), 137–152 (2008).
Jones, M. M. et al. Environmental heterogeneity and ferns. J. Ecol. 94 (1), 181–195 (2006).
FAO. GIEWS Country Brief: Iran (FAO, 2020).
Zohary, M. Geobotanical Foundations of the Middle East (Gustav Fischer, 1973).
Alaeifar, M., Sheidai, M. & Koohdar, F. Genetic diversity of Pteridium aquilinum. Plant Genet. Resour. 1–8 (2025).
Ahmed, N. et al. Purchase intention toward organic food. J. Environ. Plan. Manag. 64 (5), 796–822 (2021).
Pagès, J. Multiple Factor Analysis by Example Using R (CRC, 2014).
Lê, S., Josse, J. & Husson, F. FactoMineR: an R package. J. Stat. Softw. 25, 1–18 (2008).
Husson, F., Lê, S. & Pagès, J. Exploratory Multivariate Analysis Using R (CRC, 2011).
Jolliffe, I. Principal component analysis. In International Encyclopedia of Statistical Science, 1094–1096 (Springer, (2011).
Legendre, P. & Legendre, L. F. L. Numerical Ecology (Elsevier, 2012).
Forester, B. R. et al. Detecting multilocus adaptation. Mol. Ecol. 27 (9), 2215–2233 (2018).
Zuur, A. F. et al. Data exploration protocol. Methods Ecol. Evol. 1 (1), 3–14 (2010).
Jombart, T., Devillard, S. & Balloux, F. Spatial analysis of genetic variation. Genetics 178 (3), 1679–1691 (2008).
Hoban, S. et al. Genomic basis of local adaptation. Am. Nat. 188 (4), 379–397 (2016).
François, O. et al. Controlling false discoveries. Mol. Ecol. 25 (2), 454–469 (2016).
Andrews, K. R. et al. RADseq in genomics. Nat. Rev. Genet. 17 (2), 81–92 (2016).
Nussey, D. H. et al. Phenotypic plasticity in natural populations. J. Evol. Biol. 20 (2), 891–903 (2007).
Hadfield, J. D. MCMC methods for GLMM. (2009).
Sexton, J. P. et al. Isolation by environment or distance. Evolution 68 (1), 1–15 (2014).
Sunday, J. M. et al. Thermal tolerance in ectotherms. Proc. R Soc. B. 278 (1713), 1823–1830 (2011).
Valladares, F., Matesanz, S. & Niinemets, Ü. Environmental stress and evolution. Biol. Rev. 89 (3), 564–582 (2014).
Dawson, T. P. et al. Biodiversity conservation in changing climate. Science 332 (6025), 53–58 (2011).
Young, B. E. et al. Climate change vulnerability index. Wildl. Soc. Bull. 39 (1), 174–181 (2015).
Wessels, C., Merow, C. & Trisos, C. H. Climate change risk to wild food plants. Reg. Environ. Change. 21 (2), 29 (2021).
Rinnan, D. S. & Lawler, J. Climate-niche factor analysis. Ecography 42 (9), 1494–1503 (2019).
Gienapp, P. et al. Environmental vs. genetic effects. Ecol. Lett. 11 (7), 633–643 (2008).
Wasserman, D. et al. EPA guidance on suicide treatment. Eur. Psychiatry. 27 (2), 129–141 (2012).
Krosby, M. et al. Ecological connectivity. Conserv. Biol. 24 (6), 1686–1689 (2010).
Fick, S. E. & Hijmans, R. J. WorldClim 2. Int. J. Climatol. 37 (12), 4302–4315 (2017).
Dormann, C. F. et al. Collinearity Rev. Ecography 36 (1), 27–46 (2013).
Dijkstra, E. W. A note on two problems in connection with graphs. Numer. Math. 1 (1), 269–271 (1959).
Inoue, K. & Berg, D. J. Climate change and Cumberlandia monodonta. Glob Change Biol. 23 (1), 94–107 (2017).
McRae, B. H. Isolation by resistance. Evolution 60 (8), 1551–1561 (2006).
Manel, S. et al. Landscape genetics. Trends Ecol. Evol. 18 (4), 189–197 (2003).
Balkenhol, N. et al. Landscape Genetics: Concepts, Methods, Applications (Wiley-Blackwell, 2015).
Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470 (7335), 479–485 (2011).
Spear, S. F. et al. Resistance surfaces in landscape genetics. Mol. Ecol. 19 (17), 3576–3591 (2010).
Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge University Press, 2010).
Soetaert, K. et al. DeSolve package. J. Stat. Softw. 33 (9), 1–25 (2010).
Ixaru, L. G. & Vanden Berghe, G. Runge–Kutta solvers. In Exponential Fitting, 165–186 (Springer, 2004).
Transtrum, M. K. & Sethna, J. P. Improvements to Levenberg–Marquardt. https://arxiv.org/abs/1201.5885 (2012).
Moré, J. J. The Levenberg–Marquardt algorithm. In Numerical Analysis, 105–116 (Springer, 1978).
Gao, X. et al. Climate change and firmiana Kwangsiensis. Ecol. Evol. 12 (8), e9165 (2022).
Mittal, S. Threats to biodiversity. Global Biodiversity Outlook 2 (United Nations Environment Programme, Nairobi, (2019).
Spathelf, P. et al. Adaptive forest management. Ann. Sci. 75, 55 (2018).
Li, Y. et al. Landscape genomics. Front. Plant. Sci. 8, 2136 (2017).
Buzatti, R. S. O. et al. Leaf trait variation. Front. Plant. Sci. 10, 1580 (2019).
Sexton, J. P. et al. Adaptive responses to climate change. Evol. Appl. 2 (2), 185–197 (2009).
Hampe, A. & Petit, R. J. Conserving biodiversity. Front. Ecol. Environ. 3 (10), 542–550 (2005).
Ghasemian, S. et al. Persian squirrel genetics. Ecol. Evol. 13 (7), e10318582 (2023).
Gholamali-Fard, N. et al. Gene flow barriers in lizards. Zool. Scr. 49 (6), 738–751 (2020).
Dolatkhahi, F. et al. Genetic diversity of Dracocephalum kotschyi. Hort Environ. Biotechnol. 60 (5), 767–777 (2019).
Matesanz, S., Gianoli, E. & Valladares, F. Global change and plant plasticity. Ann. N Y Acad. Sci. 1206 (1), 35–55 (2010).
Sultan, S. E. Phenotypic plasticity. Trends Plant. Sci. 5 (12), 537–542 (2000).
Agustí, J. & Blázquez, M. A. Plant vascular development. Cell. Mol. Life Sci. 77 (19), 3711–3728 (2020).
Ehleringer, J. R. Leaf morphology and stress. Oecologia 47 (3), 307–310 (1980).
Johnson, H. B. Plant pubescence. Bot. Rev. 41 (3), 233–258 (1975).
Levin, D. A. Role of trichomes. Q. Rev. Biol. 48 (1), 3–15 (1973).
Read, J., Sanson, G. D. & Watt, A. D. Leaf shape and function. New. Phytol. 204 (2), 263–278 (2014).
Nicotra, A. B. et al. Plasticity in changing climate. Funct. Ecol. 25 (1), 237–251 (2011).
Givnish, T. J. Leaf form significance. In Topics in Plant Population Biology. 375–404 (Cambridge University Press, 1979).
Vogel, S. Convective cooling and leaf shape. J. Exp. Bot. 21 (4), 91–101 (1970).
Nobel, P. S. Physicochemical and Environmental Plant Physiology (Academic, 2009).
Parkhurst, D. F. & Mott, K. A. Gas exchange within leaves. Plant. Cell. Environ. 13 (7), 697–707 (1990).
Whitmore, T. C. Tropical Rain Forests of the Far East (Oxford University Press, 1984).
Givnish, T. J. Leaf form. In Topics in Plant Population Biology. 375–407 (Cambridge University Press, 1978).
Habel, J. C. et al. Genetic drift in orchids. Biol. Conserv. 144 (12), 3020–3027 (2011).
Row, J. R. et al. Landscape features and salamander genetics. Conserv. Genet. 15 (3), 667–680 (2014).
Geffen, E., Anderson, M. J. & Wayne, R. K. Dispersal barriers in wolves. Mol. Ecol. 13 (10), 2481–2490 (2004).
Gosper, C. R. et al. Flora conservation and OCBIL theory. Biol. J. Linn. Soc. 133 (2), 373–393 (2021).
Author information
Authors and Affiliations
Contributions
M. Sh. and F. K. Conceptualization of the project, designed the research, analysis and wrote the manuscript and M. A. collected the samples and lab work. All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Supplementary Material 1
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
Reprints and permissions
About this article
Cite this article
Sheidai, M., Alaeifar, M. & Koohdar, F. Computational analysis and modeling of climate impact on Pteridium aquilinum (L.) populations.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-33035-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-025-33035-1
Keywords
- Multivariate statistics
- Statistical modelling
- SCoT markers
- Morphometric
- Genetic markers
Source: Ecology - nature.com
