in

Contrasting pathways to tree longevity in gymnosperms and angiosperms


Abstract

Tree longevity is thought to increase in growth-limiting, adverse environments, but a quantitative assessment of drivers of global variation in tree longevity is lacking. We assemble a global database of maximum longevity for 739 tree species and analyse associations between longevity and climate, soil, and species’ functional traits. Our results show two primary pathways towards long lifespans. The first is slow growth in resource-limited environments, consistent with the “adversity begets longevity” paradigm. The second pathway is through relief from abiotic constraints in productive environments. Despite notable exceptions, long-lived gymnosperms tend to follow the first path through slow growth in cold environments, whereas long-lived angiosperms tend to follow the second (“productivity”) path reaching maximum longevity generally in humid environments. For angiosperms, we identify two mechanisms for increased longevity under humid conditions. First, higher water availability increases species’ maximum tree height which is associated with greater longevities. Secondly, greater water availability increases stand density and inter-tree competition, limiting growth which may increase tree lifespan. The documented differences between gymnosperm and angiosperm longevity are likely rooted in intrinsic differences in hydraulic architecture that provide fitness advantages for gymnosperms under high abiotic stress, and for angiosperms under increased productivity or competition.

Data availability

Data on species’ maximum longevity, traits, and climate that support the findings of this study are available from https://doi.org/10.6084/m9.figshare.29876984. Original raw tree ring data from the ITRDB can be downloaded from https://www.ncei.noaa.gov/products/paleoclimatology/tree-ring, and tropical tree ring data compilations from https://figshare.com/articles/dataset/Locoselli_et_al_2020_Global_tree-ring_analysis_reveals_rapid_decrease_in_tropical_tree_longevity_with_temperature_PNAS/13119842?file=25178405. Individual longevity records from following oldlists http://www.rmtrr.org/oldlist.htm, https://www.ldeo.columbia.edu/~adk/oldlisteast/, http://www.nativetreesociety.org/dendro/ents_maximum_ages.htm, https://www.oldgrowth.ca/oldtrees/. Tree height data can be downloaded from https://zenodo.org/record/6637599, and maximum height measurements were obtained from https://www.conifers.org and https://Monumentaltrees.com. Wood density data can be obtained from https://zenodo.org/records/13322441, and from https://doi.org/10.18167/DVN1/KRVF0E. Conduit density from https://doi.org/10.5061/dryad.1138, and conduit density, P50 and HSM from https://doi.org/10.5061/dryad.1138, and from https://doi.org/10.1126/sciadv.aav1332. Leaf traits from https://www.nature.com/articles/nature02403#Sec15, and seedmass data from https://www.try-db.org/TryWeb/dp.php, database request No 30569. Mean climate and soil data for a species were obtained from the TreeGOER database https://zenodo.org/records/10008994, and gridded climate and elevation data from https://www.worldclim.org/data/worldclim21.html, growing season length and site level Net Primary Productivity (NPP) from https://chelsa-climate.org/. Species occurrence data from https://doi.org/10.15468/dl.77gcvq.

Code availability

Code to reproduce the Figs. 1–3 and Supplementary Figs. 3–6, 8, 9 and statistics are available from https://doi.org/10.6084/m9.figshare.29876984.

References

  1. Piovesan, G. & Biondi, F. On tree longevity. N. Phytologist 231, 1318–1337 (2021).

    Google Scholar 

  2. Körner, C. A matter of tree longevity. Science 355, 130–131 (2017).

    Google Scholar 

  3. Reich, P. B. The world-wide ‘fast–slow’plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).

    Google Scholar 

  4. Salguero-Gómez, R. Applications of the fast–slow continuum and reproductive strategy framework of plant life histories. N. Phytologist 213, 1618–1624 (2017).

    Google Scholar 

  5. Bialic-Murphy, L. et al. The pace of life for forest trees. Science 386, 92–98 (2024).

    Google Scholar 

  6. Morris, W. F. et al. Longevity can buffer plant and animal populations against changing climatic variability. Ecology 89, 19–25 (2008).

    Google Scholar 

  7. Chondol, T. et al. Habitat preferences and functional traits drive longevity in Himalayan high-mountain plants. Oikos 2023, e010073 (2023).

    Google Scholar 

  8. Friend, A. D. et al. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proc. Natl. Acad. Sci. USA 111, 3280–3285 (2014).

    Google Scholar 

  9. Galbraith, D. et al. Residence times of woody biomass in tropical forests. Plant Ecol. Diversity 6, 139–157 (2013).

    Google Scholar 

  10. Liu, J. et al. Age and spatial distribution of the world’s oldest trees. Conserv. Biol. 36, e13907 (2022).

    Google Scholar 

  11. Locosselli, G. M. et al. Global tree-ring analysis reveals rapid decrease in tropical tree longevity with temperature. Proc. Natl. Acad. Sci. 117, 33358–33364 (2020).

    Google Scholar 

  12. Schulman, E. Longevity under Adversity in Conifers. Science 119, 396–399 (1954).

    Google Scholar 

  13. Stahle, D. et al. Longevity, climate sensitivity, and conservation status of wetland trees at Black River, North Carolina. Environ. Res. Commun. 1, 041002 (2019).

    Google Scholar 

  14. Patrut, A. et al. Radiocarbon dating of a very large African baobab. Tree Physiol. 27, 1569–1574 (2007).

    Google Scholar 

  15. Condit, R., Hubbel, S. P. & Foster, R. B. Identifying fast-growing native trees from the neotropics using data from a large, permanent census plot. Ecol. Manag. 62, 123–143 (1993).

    Google Scholar 

  16. Kurokawa, H., Yoshida, T., Nakamura, T., Lai, J. & Nakashizuka, T. The age of tropical rain-forest canopy species, Borneo ironwood (Eusideroxylon zwageri), determined by 14 C dating. J. Trop. Ecol. 19, 1–7 (2003).

    Google Scholar 

  17. Vieira, S. et al. Slow growth rates of Amazonian trees: Consequences for carbon cycling. Proc. Natl. Acad. Sci. USA 102, 18502–18507 (2005).

    Google Scholar 

  18. Stearns, S. C. Trade-offs in life-history evolution. Funct. Ecol. 3, 259–268 (1989).

    Google Scholar 

  19. Stephenson, N. L. et al. Causes and implications of the correlation between forest productivity and tree mortality rates. Ecol. Monogr. 81, 527–555 (2011).

    Google Scholar 

  20. Brienen, R. J. et al. Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nat. Commun. 11, 4241 (2020).

    Google Scholar 

  21. Rüger, N. et al. Beyond the fast–slow continuum: demographic dimensions structuring a tropical tree community. Ecol. Lett. 21, 1075–1084 (2018).

    Google Scholar 

  22. Adler, P. B. et al. Functional traits explain variation in plant life history strategies. Proc. Natl. Acad. Sci. 111, 740–745 (2014).

    Google Scholar 

  23. Wright, S. J. et al. Functional traits and the growth-mortality trade-off in tropical trees. Ecology 91, 3664–3674 (2011).

    Google Scholar 

  24. Poorter, L. et al. Are functional traits good predictors of demographic rates? Evidence from five Neotropical forests. Ecology 89, 1908–1920 (2008).

    Google Scholar 

  25. Loehle, C. Tree Life-History Strategies – the Role of Defenses. Can. J. For. Res. 18, 209–222 (1988).

    Google Scholar 

  26. Lu, R. et al. The U-shaped pattern of size-dependent mortality and its correlated factors in a subtropical monsoon evergreen forest. J. Ecol. 109, 2421–2433 (2021).

    Google Scholar 

  27. Xu, C. & Liu, H. Hydraulic adaptability promotes tree life spans under climate dryness. Glob. Ecol. Biogeogr. 31, 51–61 (2022).

    Google Scholar 

  28. Liu, L. et al. Tropical tall forests are more sensitive and vulnerable to drought than short forests. Glob. Chang Biol. 28, 1583–1595 (2022).

    Google Scholar 

  29. Bond, W. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biol. J. Linn. Soc. 36, 227–249 (1989).

    Google Scholar 

  30. Lusk, C. H., Wright, I. & Reich, P. B. Photosynthetic differences contribute to competitive advantage of evergreen angiosperm trees over evergreen conifers in productive habitats. N. Phytologist 160, 329–336 (2003).

    Google Scholar 

  31. Brodribb, T. J. & Feild, T. S. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol. Lett. 13, 175–183 (2010).

    Google Scholar 

  32. Johnson, D. M., McCulloh, K. A., Woodruff, D. R. & Meinzer, F. C. Hydraulic safety margins and embolism reversal in stems and leaves: why are conifers and angiosperms so different?. Plant Sci. 195, 48–53 (2012).

    Google Scholar 

  33. Sperry, J. S., Hacke, U. G. & Pittermann, J. Size and function in conifer tracheids and angiosperm vessels. Am. J. Bot. 93, 1490–1500 (2006).

    Google Scholar 

  34. Gao, J. et al. Climate-driven patterns of global tree longevity. Commun. Earth Environ. 6, 610 (2025).

    Google Scholar 

  35. Willis, K. J. & McElwain, J. C. The Evolution of Plants (Oxford University Press, USA, 2014).

  36. Ma, H. et al. The global biogeography of tree leaf form and habit. Nat. Plants, 9, 1795–1809 (2023).

  37. Joswig, J. S. et al. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat. Ecol. Evolution 6, 36–50 (2022).

    Google Scholar 

  38. Gao, S. et al. An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas. Nat. Ecol. evolution 6, 397–404 (2022).

    Google Scholar 

  39. Reich, P. B. & Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. 101, 11001–11006 (2004).

    Google Scholar 

  40. Rossi, S., Deslauriers, A., Anfodillo, T. & Carraro, V. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152, 1–12 (2007).

    Google Scholar 

  41. Björklund, J., Fonti, M. V., Fonti, P., Van den Bulcke, J. & von Arx, G. Cell wall dimensions reign supreme: cell wall composition is irrelevant for the temperature signal of latewood density/blue intensity in Scots pine. Dendrochronologia 65, 125785 (2021).

    Google Scholar 

  42. Berry, J. & Bjorkman, O. Photosynthetic response and adaptation to temperature in higher-plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 31, 491–543 (1980).

    Google Scholar 

  43. Reich, P. B., Walters, M. & Ellsworth, D. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol. Monogr. 62, 365–392 (1992).

    Google Scholar 

  44. Reich, P. B., Rich, R. L., Lu, X., Wang, Y.-P. & Oleksyn, J. Biogeographic variation in evergreen conifer needle longevity and impacts on boreal forest carbon cycle projections. Proc. Natl. Acad. Sci. 111, 13703–13708 (2014).

    Google Scholar 

  45. Issartel, J. & Coiffard, C. Extreme longevity in trees: live slow, die old?. Oecologia 165, 1–5 (2011).

    Google Scholar 

  46. Sillett, S. C. et al. Comparative development of the four tallest conifer species. Ecol. Manag. 480, 118688 (2021).

    Google Scholar 

  47. Franceschi, V. R., Krokene, P., Christiansen, E. & Krekling, T. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. N. Phytol. 167, 353–376 (2005).

    Google Scholar 

  48. Sillett, S. C. et al. How do tree structure and old age affect growth potential of California redwoods?. Ecol. Monogr. 85, 181–212 (2015).

    Google Scholar 

  49. Scheffer, M. et al. A global climate niche for giant trees. Glob. Change Biol. 24, 2875–2883 (2018).

    Google Scholar 

  50. Moles, A. T. et al. Global patterns in plant height. J. Ecol. 97, 923–932 (2009).

    Google Scholar 

  51. Liu, H. et al. Hydraulic traits are coordinated with maximum plant height at the global scale. Sci. Adv. 5, eaav1332 (2019).

    Google Scholar 

  52. Klein, T., Randin, C. & Körner, C. Water availability predicts forest canopy height at the global scale. Ecol. Lett. 18, 1311–1320 (2015).

    Google Scholar 

  53. Madrigal-González, J. et al. Global patterns of tree density are contingent upon local determinants in the world’s natural forests. Commun. Biol. 6, 47 (2023).

    Google Scholar 

  54. Crowther, T. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).

    Google Scholar 

  55. Brienen, R. et al. Paired analysis of tree ring width and carbon isotopes indicates when controls on tropical tree growth change from light to water limitations. Tree Physiol. 42, 1131–1148 (2022).

    Google Scholar 

  56. Canham, C. D. Suppression and release during canopy recruitment in Acer saccharum. Bull. Torre. Bot. Club 112, 145 (1985).

    Google Scholar 

  57. Brienen, R. J. W. & Zuidema, P. A. Lifetime growth patterns and ages of Bolivian rain forest trees obtained by tree ring analysis. J. Ecol. 94, 481–493 (2006).

    Google Scholar 

  58. Di Filippo, A. et al. The longevity of broadleaf deciduous trees in Northern Hemisphere temperate forests: insights from tree-ring series. Front. Ecol. Evol. 3, 46 (2015).

    Google Scholar 

  59. Pavlin, J. et al. Disturbance history is a key driver of tree life span in temperate primary forests. J. Vegetation Sci. 32, e13069 (2021).

    Google Scholar 

  60. Hubau, W. et al. The persistence of carbon in the African forest understory. Nat. Plants 5, 133–140 (2019).

    Google Scholar 

  61. Lusk, C. H. & Reich, P. B. Relationships of leaf dark respiration with light environment and tissue nitrogen content in juveniles of 11 cold-temperate tree species. Oecologia 123, 318–329 (2000).

    Google Scholar 

  62. Reich, P. B., Uhl, C., Walters, M. B., Prugh, L. & Ellsworth, D. S. Leaf demography and phenology in Amazonian rain forest: a census of 40 000 leaves of 23 tree species. Ecol. Monogr. 74, 3–23 (2004).

    Google Scholar 

  63. Sanchez-Martinez, P. et al. Increased hydraulic risk in assemblages of woody plant species predicts spatial patterns of drought-induced mortality. Nat. Ecol. Evol. 7, 1620–1632 (2023).

    Google Scholar 

  64. Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752 (2012).

    Google Scholar 

  65. Tavares, J. V. et al. Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests. Nature 617, 111–117 (2023).

    Google Scholar 

  66. McCulloh, K. et al. Moving water well: comparing hydraulic efficiency in twigs and trunks of coniferous, ring-porous, and diffuse-porous saplings from temperate and tropical forests. N. Phytol. 186, 439–450 (2010).

    Google Scholar 

  67. Brodribb, T. J., Feild, T. S. & Jordan, G. J. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol. 144, 1890–1898 (2007).

    Google Scholar 

  68. Carlquist, S. J. Ecological Strategies of Xylem Evolution (Univ of California Press, 1975).

  69. Brodribb, T. & Hill, R. The importance of xylem constraints in the distribution of conifer species. N. Phytologist 143, 365–372 (1999).

    Google Scholar 

  70. Brodribb, T. J., Pittermann, J. & Coomes, D. A. Elegance versus speed: examining the competition between conifer and angiosperm trees. Int. J. Plant Sci. 173, 673–694 (2012).

    Google Scholar 

  71. Morris, H., Brodersen, C., Schwarze, F. W. & Jansen, S. The parenchyma of secondary xylem and its critical role in tree defense against fungal decay in relation to the CODIT model. Front. Plant Sci. 7, 1665 (2016).

    Google Scholar 

  72. Weedon, J. T. et al. Global meta-analysis of wood decomposition rates: a role for trait variation among tree species?. Ecol. Lett. 12, 45–56 (2009).

    Google Scholar 

  73. Herms, D. A. & Mattson, W. J. The dilemma of plants: to grow or defend. Q. Rev. Biol. 67, 283–335 (1992).

    Google Scholar 

  74. Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).

    Google Scholar 

  75. Hacke, U. G., Sperry, J. S., Pockman, W. T., Davis, S. D. & McCulloh, K. A. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126, 457–461 (2001).

    Google Scholar 

  76. Esquivel-Muelbert, A. et al. Tree mode of death and mortality risk factors across Amazon forests. Nat. Commun. 11, 5515 (2020).

    Google Scholar 

  77. Maynard, D. S. et al. Global relationships in tree functional traits. Nat. Commun. 13, 3185 (2022).

    Google Scholar 

  78. Diaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    Google Scholar 

  79. Canham, C. D., Papaik, M. J. & Latty, E. F. Interspecific variation in susceptibility to windthrow as a function of tree size and storm severity for northern temperate tree species. Can. J. For. Res. 31, 1–10 (2001).

    Google Scholar 

  80. Rich, R. L., Frelich, L. E. & Reich, P. B. Wind-throw mortality in the southern boreal forest: Effects of species, diameter and stand age. J. Ecol. 95, 1261–1273 (2007).

    Google Scholar 

  81. Lee, C. A., Voelker, S., Holdo, R. M. & Muzika, R.-M. Tree architecture as a predictor of growth and mortality after an episode of red oak decline in the Ozark Highlands of Missouri, USA. Can. J. For. Res. 44, 1005–1012 (2014).

    Google Scholar 

  82. Gora, E. M. et al. A mechanistic and empirically supported lightning risk model for forest trees. J. Ecol. 108, 1956–1966 (2020).

    Google Scholar 

  83. Ishii, H. & Ford, E. D. Persistence of Pseudotsuga menziesii (Douglas-fir) in temperate coniferous forests of the Pacific Northwest Coast, USA. Folia Geobotanica 37, 63–69 (2002).

    Google Scholar 

  84. Gora, E. M. & Esquivel-Muelbert, A. Implications of size-dependent tree mortality for tropical forest carbon dynamics. Nat. Plants 7, 384–391 (2021).

    Google Scholar 

  85. Bigler, C. Trade-offs between growth rate, tree size and lifespan of mountain pine (Pinus montana) in the Swiss National Park. PloS One 11, e0150402 (2016).

    Google Scholar 

  86. Yang, J., Cao, M. & Swenson, N. G. Why functional traits do not predict tree demographic rates. Trends Ecol. Evol. 33, 326–336 (2018).

    Google Scholar 

  87. Hecking, M. J., Zukswert, J. M., Drake, J. E., Dovciak, M. & Burton, J. I. Montane temperate-boreal forests retain the leaf economic spectrum despite intraspecific variability. Front. For. Glob. Change 4, 754063 (2022).

    Google Scholar 

  88. Sperry, J. S. Evolution of water transport and xylem structure. Int. J. Plant Sci. 164, S115–S127 (2003).

    Google Scholar 

  89. Baker, T. R. et al. Fast demographic traits promote high diversification rates of Amazonian trees. Ecol. Lett. 17, 527–536 (2014).

    Google Scholar 

  90. Grime, J. P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Naturalist 111, 1169–1194 (1977).

    Google Scholar 

  91. Pavlin, J. et al. Pathways and drivers of canopy accession across primary temperate forests of Europe. Sci. Total Environ. 906, 167593 (2024).

    Google Scholar 

  92. Kindt, R. WorldFlora: an R package for exact and fuzzy matching of plant names against the World Flora Online taxonomic backbone data. Appl. Plant Sci. 8, e11388 (2020).

    Google Scholar 

  93. Beech, E., Rivers, M., Oldfield, S. & Smith, P. GlobalTreeSearch: the first complete global database of tree species and country distributions. J. Sustain. Forestry 36, 454–489 (2017).

    Google Scholar 

  94. Biondi, F., Meko, D. M. & Piovesan, G. Maximum tree lifespans derived from public-domain dendrochronological data. Iscience 26, 106138 (2023).

  95. Zhao, S. et al. The International Tree-Ring Data Bank (ITRDB) revisited: data availability and global ecological representativity. J. Biogeogr. 46, 355–368 (2019).

    Google Scholar 

  96. Cazzolla Gatti, R. et al. The number of tree species on Earth. Proc. Natl. Acad. Sci. 119, e2115329119 (2022).

    Google Scholar 

  97. Chambers, J. Q., Higuchi, N. & Schimel, J. P. Ancient trees in Amazonia. Nature 39, 135–136 (1998).

    Google Scholar 

  98. Worbes, M. & Junk, W. J. How old are tropical trees? The persistence of a myth. IAWA J. 20, 255–260 (1999).

    Google Scholar 

  99. Martinez-Ramos, M. & Alvarez-Buylla, E. R. How old are tropical rain forest trees?. Trends Plant Sci. 3, 400–405 (1998).

    Google Scholar 

  100. Kindt, R. TreeGOER: A database with globally observed environmental ranges for 48,129 tree species. Glob. Change Biol. 29, 6303–6318 (2023).

    Google Scholar 

  101. Gbif.org. GBIF occurrence download https://doi.org/10.15468/dl.77gcvq (2021).

  102. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Google Scholar 

  103. Willmott, C. J. & Feddema, J. J. A more rational climatic moisture index. Professional Geographer 44, 84–88 (1992).

    Google Scholar 

  104. Poggio, L. et al. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. Soil 7, 217–240 (2021).

    Google Scholar 

  105. Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 1–20 (2017).

    Google Scholar 

  106. Paulsen, J. & Körner, C. A climate-based model to predict potential treeline position around the globe. Alp. Bot. 124, 1–12 (2014).

    Google Scholar 

  107. Jucker, T. et al. Tallo: A global tree allometry and crown architecture database. Glob. Change Biol. 28, 5254–5268 (2022).

    Google Scholar 

  108. Zanne, A. E. et al. Data from: Towards a worldwide wood economics spectrum. Dryad Digital Repos. https://doi.org/10.5061/dryad.234 (2009).

    Google Scholar 

  109. Vieilledent, G. et al. New formula and conversion factor to compute basic wood density of tree species using a global wood technology database. Am. J. Bot. 105, 1653–1661 (2018).

    Google Scholar 

  110. Zanne, A. E. et al. Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am. J. Bot. 97, 207–215 (2009).

    Google Scholar 

  111. Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    Google Scholar 

  112. Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Chang Biol. 26, 119–188 (2020).

    Google Scholar 

  113. Grömping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 17, 1–27 (2007).

    Google Scholar 

  114. Swenson, N. G. & Enquist, B. J. Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. Am. J. Bot. 94, 451–459 (2007).

    Google Scholar 

  115. Maire, V. et al. Global effects of soil and climate on leaf photosynthetic traits and rates. Glob. Ecol. Biogeogr. 24, 706–717 (2015).

    Google Scholar 

  116. Rosseel, Y. lavaan: An R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2012).

    Google Scholar 

  117. Hu, L. T. & Bentler, P. M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. 6, 1–55 (1999).

    Google Scholar 

  118. Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).

    Google Scholar 

  119. R_Core_Team. R: A Language and Environment for Statistical Computing (R_Core_Team, 2023).

  120. Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).

    Google Scholar 

  121. Orme, D. et al. The caper package: comparative analysis of phylogenetics and evolution in R. R. Package Version 5, 1–36 (2013).

    Google Scholar 

  122. Revell, L. J. phytools 2.0: an updated R ecosystem for phylogenetic comparative methods (and other things). PeerJ 12, e16505 (2024).

    Google Scholar 

  123. Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    Google Scholar 

  124. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 48 (2015).

Download references

Acknowledgements

We acknowledge the contributors to International Tree-Ring Data Bank for making available raw tree-ring data, and we thank staff at the Direction des Inventaires Forestiers of the Ministère des Ressources naturelles et des Forêts du Québec for sharing tree-ring and sample plot data from the forest inventory program in Quebec, Canada. We further thank Ailene Ettinger, Gregory Peterson, Janneke Hille Ris Lambers, Jeremy Little, Jill Harvey, and Jordi Axelsons for contributing original data. This study was supported by the following grants; National Environmental Research Council grants NE/S008659/1 (R.B.), NE/N012542/1 (E.G.), and NE/R005079/1 (E.G., R.S.); FAPESP grants 12/50457-4, 2019/08783-0 (G.L., G.C.) and 17/5008-3 (G.L., G.C.); Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, grants 478503/2009 (G.L., G.C.), 311247/2021-0 (J.S.) and 441811/2020-5 (J.S.); CNPq/ FAPEAM, Fundação de Amparo à Pesquisa do Estado do Amazonas, grant number 01.02.016301.02630/2022-76 (J.S.); Czech Science Foundation research grants 24-12210 K (J.P. and M.S.) and 23-05272S (J.A., J.D., K.K., N.A., P.F., V.B.); Mobility Plus between the Czech Republic and Taiwan, NSTC-24-08 (J.A., J.D., K.K., N.A., P.F., V.B.); Czech Academy of Sciences long-term research development project No. RVO 67985939 (J.A., J.D., K.K., N.A., P.F., V.B.); Utah Agricultural Experiment Station, Utah State University, and approved as journal paper number 9803 (R.J.D.); Academy of Finland, #339788 (S.H.); European Union, NextGenerationEU, Italian Ministry of University and Research under PNRR – M4C2-I1.4 Project code: CN00000033, Title: NBFC – National Biodiversity Future Center, CUP: J83C22000860007 (G.P.); Ministry of University and Research (MUR) via the Agritech National Research Centre, European Union Next-GenerationEU PNRR M4C2-I1.4 Project Code: CN00000022 (A.D.); Departments of Excellence (Law 232/2016) Project 2023-27 “Digital, Intelligent, Green and Sustainable (D.I.Ver.So)” (A.D.); National Science Foundation, Division of Environmental Biology, award #1945910 (N.P.); Directorate for Biological Sciences, Emerging Frontiers, award #1241870 (N.P.); Redes Federales de Alto Impacto, Bosque-Clima CN32 (L.L., R.V.); MSMT INTER-EXCELLENCE, # LUAUS24258 (J.D.), Estonian Research Council, grant PSG1044 (J.A.).

Author information

Authors and Affiliations

Authors

Contributions

R.B., G.L., S.K., E.G., and R.W. designed the study, R.B., R.W. and S.K. downloaded and compiled functional traits and ITRDB datasets, R.B., R.W. and S.K. analysed data, G.L. and S.K. compiled the tropical longevity datasets, M.M., D.B., R.S. and P.R. provided functional traits data, R.B., G.L., S.K., S.V., C.E., G.P. and N.P. revised and improved the longevity database, R.B., G.L., S.V., J.A., N.A., L.A., M.B., V.B., B.B., P.B., G.C., J.dR., J.V.D., A.D., J.D., L.D., C.E., P.F., H.G., S.H., S.K.l., K.K., D.L., S.L., L.L., T.N., J.P., N.P., G.P., C.R., D.S., J.S., J.D.S., D.S., M.S., R.V., L.W., and C.Z. contributed original longevity data, R.B. wrote the first draft of the manuscript and all authors revised the manuscript.

Corresponding author

Correspondence to
Roel J. W. Brienen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Christian Korner, Ricardo Segovia, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Brienen, R.J.W., Locosselli, G.M., Krottenthaler, S. et al. Contrasting pathways to tree longevity in gymnosperms and angiosperms.
Nat Commun (2025). https://doi.org/10.1038/s41467-025-67619-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41467-025-67619-2


Source: Ecology - nature.com

Physicochemical and typological insights into Aedes albopictus and Aedes aegypti larval habitats in a sub-Saharan African urban gradient setting

Enhancing demarcation in regionalization in the eastern Qinghai-Xizang Plateau through geographically weighted

Back to Top