in

Delayed dynamics and detoxification in nutrient-phytoplankto-by-product systems: mechanisms driving bloom stability and oscillations


Abstract

Phytoplankton blooms emerge from the interplay between nutrient availability, biomass growth, and inhibitory by-products such as toxins or exudates. Here, we develop a mechanistic nutrient–phytoplankton–by-product model that couples Beddington–DeAngelis nutrient uptake, by-product-mediated inhibition, and nutrient-dependent detoxification. Analytical results demonstrate that the system remains biologically feasible and bounded, and that a threshold condition governs bloom initiation. Linear stability and bifurcation analyses reveal how detoxification delays can trigger oscillatory bloom behaviour. Across ecologically realistic parameter regimes, the system tends to a stable coexistence state—either directly or through damped oscillations—rather than exhibiting repeated bloom–crash cycles. Global sensitivity analysis (PRCC and Sobol indices) highlights by-product production, inhibition strength, detoxification rate, toxin-linked mortality, and saturation effects as dominant regulators of stability and damping time. Introducing an explicit ecological delay exposes a critical threshold at which a Hopf bifurcation arises, converting the stable equilibrium into sustained oscillations. Numerical simulations confirm the transversality condition and indicate a supercritical onset. Collectively, these results provide a quantitative diagnostic for distinguishing transient from sustained bloom oscillations and identify measurable ecological processes—particularly detoxification and delayed feedback—that govern transitions between stable and oscillatory regimes.

Similar content being viewed by others

Seasonal refuge patterns of phytoplankton trigger irregular bloom events in a contaminated environment

Phytoplankton community structuring and succession in a competition-neutral resource landscape

Dynamical complexity of a three species food chain model incorporating delays and toxic habitat

Data availability

The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

References

  1. Reynolds, C. S. The Ecology of Phytoplankton (Cambridge University Press, 2006). https://doi.org/10.1017/CBO9780511542145.

    Google Scholar 

  2. Paerl, H. W. & Otten, T. G. Harmful cyanobacterial blooms: Causes, consequences, and controls. Microb. Ecol. 65(4), 995–1010. https://doi.org/10.1007/s00248-012-0159-y (2013).

    Google Scholar 

  3. Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16(8), 471–483. https://doi.org/10.1038/s41579-018-0040-1 (2018).

    Google Scholar 

  4. Paerl, H. W. & Otten, T. G. Duelling CyanoHABs: Unravelling the environmental drivers controlling dominance. Environ. Microbiol. 22(10), 3817–3828. https://doi.org/10.1111/1462-2920.15125 (2020).

    Google Scholar 

  5. Taranu, Z. E. et al. Widespread increases in cyanobacteria blooms are reshaping lake ecosystems. Proc. R. Soc. B 289, 20221056. https://doi.org/10.1098/rspb.2022.1056 (2022).

    Google Scholar 

  6. Huisman, J. et al. Cyanobacterial blooms: The role of climate change and nutrient loading. Nat. Rev. Microbiol. 18(1), 64–76. https://doi.org/10.1038/s41579-019-0286-0 (2020).

    Google Scholar 

  7. Anderson, D. M. et al. Harmful algal blooms and climate change. Harmful Algae 108, 102105. https://doi.org/10.1016/j.hal.2021.102105 (2021).

    Google Scholar 

  8. Glibert, P. M. Harmful algal blooms: A global perspective. J. Oceanol. Limnol. 38, 1225–1244. https://doi.org/10.1007/s00343-020-00070-z (2020).

    Google Scholar 

  9. Legrand, C., Rengefors, K., Fistarol, G. O. & Graneli, E. Allelopathy in phytoplankton: Biochemical, ecological and evolutionary aspects. Phycologia 42(4), 406–419. https://doi.org/10.2216/i0031-8884-42-4-406.1 (2003).

    Google Scholar 

  10. Graneli, E. & Hansen, P. J. Allelopathy in harmful algae: A mechanism to compete for resources. In Ecology of Harmful Algae (eds Graneli, E. & Turner, J. T.) 189–201 (Springer, 2006).

    Google Scholar 

  11. Graneli, E., Weberg, M. & Salomon, P. S. Harmful algal blooms of allelopathic microalgal species: The role of eutrophication. Harmful Algae 8(1), 94–102. https://doi.org/10.1016/j.hal.2008.08.011 (2008).

    Google Scholar 

  12. Fistarol, G. O., Legrand, C. & Graneli, E. Allelopathic effect on a nutrient-limited phytoplankton species. Mar. Ecol. – Prog. Ser. 255, 115–125. https://doi.org/10.3354/meps255115 (2003).

    Google Scholar 

  13. Tillmann, U. et al. Inhibition of competing phytoplankton by Alexandrium ostenfeldii: A review of allelochemical potency. J. Plankton Res. 29(6), 547–565. https://doi.org/10.1093/plankt/fbm041 (2007).

    Google Scholar 

  14. Dzyubenko, E. V. et al. Mechanisms of allelopathy in marine and freshwater microalgae. Harmful Algae 108, 102099. https://doi.org/10.1016/j.hal.2021.102099 (2021).

    Google Scholar 

  15. Zhang, Y. et al. Dynamics of transparent exopolymer particles in bloom-forming cyanobacteria. Environ. Sci. Technol. 56(4), 2449–2459. https://doi.org/10.1021/acs.est.1c05508 (2022).

    Google Scholar 

  16. Hansell, D. A., & Carlson, C. A. (Eds.). Biogeochemistry of Marine Dissolved Organic Matter (2nd ed.). Academic Press. (2015).

  17. Decho, A. W. & Gutierrez, T. Microbial extracellular polymeric substances (EPSs) in ocean systems. Front. Microbiol. 8, 922. https://doi.org/10.3389/fmicb.2017.00922 (2017).

    Google Scholar 

  18. Verdugo, P. Marine microgels. Annu. Rev. Mar. Sci. 4, 375–400. https://doi.org/10.1146/annurev-marine-120709-142759 (2012).

    Google Scholar 

  19. Cisternas-Novoa, C., Lee, C. & Engel, A. Transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP): A review. Mar. Chem. 175, 4–13. https://doi.org/10.1016/j.marchem.2015.03.009 (2015).

    Google Scholar 

  20. Grossart, H. P. et al. Extracellular polymeric substances in aquatic systems: Role and composition. Nat. Microbiol. 6, 169–181. https://doi.org/10.1038/s41564-020-00807-w (2021).

    Google Scholar 

  21. Park, H.-D. et al. Degradation of microcystin by a new bacterium isolated from a hypertrophic lake. Lett. Appl. Microbiol. 33(3), 247–251. https://doi.org/10.1046/j.1472-765X.2001.00993.x (2001).

    Google Scholar 

  22. Bourne, D. G. et al. Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin-LR. Appl. Environ. Microbiol. 62(11), 4086–4094 (1996).

    Google Scholar 

  23. Faassen, E. J. Cyanotoxins: Occurrence, toxicology, and detection. Toxins 14(1), 48. https://doi.org/10.3390/toxins14010048 (2022).

    Google Scholar 

  24. Orellana, M. V. et al. Marine microgels as a source of cloud condensation nuclei in the high Arctic. Proc. Natl. Acad. Sci. 108(33), 13612–13617. https://doi.org/10.1073/pnas.1102457108 (2011).

    Google Scholar 

  25. Gerphagnon, M. et al. Virus-phytoplankton interactions and the control of bloom dynamics. ISME Journal 14, 1431–1442. https://doi.org/10.1038/s41396-020-0624-8 (2020).

    Google Scholar 

  26. Su, X. et al. Functional roles of microbial aggregates in aquatic ecosystems. Trends Microbiol. 29(6), 485–497. https://doi.org/10.1016/j.tim.2020.12.007 (2021).

    Google Scholar 

  27. Beversdorf, L. J. et al. Phytoplankton community shifts under warming conditions explain cyanobacteria expansion. Limnol. Oceanogr. 65(12), 3186–3202. https://doi.org/10.1002/lno.11584 (2020).

    Google Scholar 

  28. Boero, F. et al. Marine plankton trophic interactions and regime shifts. Mar. Ecol. – Prog. Ser. 646, 1–15. https://doi.org/10.3354/meps13380 (2020).

    Google Scholar 

  29. Lin, S. et al. Adaptive strategies of harmful algae under nutrient stress. Nat. Commun. 14, 1254. https://doi.org/10.1038/s41467-023-36912-7 (2023).

    Google Scholar 

  30. Lu, J. et al. Global rise of harmful algal blooms: Drivers, risks, and management strategies. Sci. Total Environ. 909, 168771. https://doi.org/10.1016/j.scitotenv.2023.168771 (2024).

    Google Scholar 

  31. Rosenzweig, M. L. & MacArthur, R. H. Graphical representation and stability conditions of predator-prey interactions. Am. Nat. 97(895), 209–223. https://doi.org/10.1086/282272 (1963).

    Google Scholar 

  32. Holling, C. S. The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can. Entomol. 91(5), 293–320. https://doi.org/10.4039/Ent91293-5 (1959).

    Google Scholar 

  33. Beddington, J. R. Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44(1), 331–340. https://doi.org/10.2307/3866 (1975).

    Google Scholar 

  34. DeAngelis, D. L., Goldstein, R. A. & O’Neill, R. V. A model for trophic interaction. Ecology 56(4), 881–892. https://doi.org/10.2307/1936298 (1975).

    Google Scholar 

  35. Smith, H. L. & Waltman, P. The Theory of the Chemostat: Dynamics of Microbial Competition (Cambridge University Press, 1995). https://doi.org/10.1017/CBO9780511530043.

    Google Scholar 

  36. Monod, J. The growth of bacterial cultures. Annu. Rev. Microbiol. 3, 371–394. https://doi.org/10.1146/annurev.mi.03.100149.002103 (1949).

    Google Scholar 

  37. Droop, M. R. The nutrient status of algal cells in continuous culture. J. Mar. Biol. Assoc. U. K. 54(4), 825–855 (1974).

    Google Scholar 

  38. Strogatz, S. H. Nonlinear Dynamics and Chaos 2nd ed. (CRC Press, 2018). https://doi.org/10.1201/9780429492563.

    Google Scholar 

  39. Guckenheimer, J. & Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer https://doi.org/10.1007/978-1-4612-1140-2 (1983).

    Google Scholar 

  40. Kuznetsov, Y. A. Elements of Applied Bifurcation Theory 3rd ed. (Springer, 2004). https://doi.org/10.1007/978-1-4757-3978-7.

    Google Scholar 

  41. Pareek, S. & Baghel, R. S. A food web exhibiting group defenses in spatiotemporal dynamics. Int. J. Appl. Comput. Math. 11(5), 1–30 (2025) (Springer).

    Google Scholar 

  42. Baghel, R. S. Memory and delay-driven dynamics in a tritrophic food chain model with Allee effect and nonlinear predation, Nonlinear Sci., 100069, https://doi.org/10.1016/j.nls.2025.100069 (2025).

  43. Liao, T. & Yin, H. Joint impact of global warming and Allee effect on the phytoplankton-zooplankton dynamics under the mean-reverting Ornstein-Uhlenbeck process. Eur. Phys. J. Plus 140(5), 423 (2025).

    Google Scholar 

  44. Liao, T. The impact of temperature variation on the algae-zooplankton dynamics with size-selective disturbance. Chaos, Solitons & Fractals 181, 114615 (2024).

    Google Scholar 

  45. Liao, T. Dynamical complexity driven by water temperature in a size-dependent phytoplankton-zooplankton model with environmental variability. Chin. J. Phys. 88, 557–583 (2024).

    Google Scholar 

  46. Liao, T. Dynamics complexity induced by salinity in a stochastic phytoplankton-zooplankton model under acid-base changes. Math. Methods Appl. Sci.. 48(12), 12258–12281 (2025).

  47. Li, X. et al. Bifurcation analysis of a new aquatic ecological model with aggregation effect. Math. Comput. Simul. 190, 75–96 (2021).

    Google Scholar 

  48. Saito, M. A. et al. Microbial nutrient limitation in the ocean. Annu. Rev. Mar. Sci. 12, 187–217. https://doi.org/10.1146/annurev-marine-010318-095241 (2020).

    Google Scholar 

  49. Pettersson, L. H. et al. Hybrid models of plankton dynamics: Integrating mechanistic and data-driven frameworks. Ecol. Model. 464, 109844. https://doi.org/10.1016/j.ecolmodel.2022.109844 (2022).

    Google Scholar 

  50. Levine, N. M. et al. Modeling phytoplankton-nutrient interactions under climate change. PNAS 118(30), e2026815118. https://doi.org/10.1073/pnas.2026815118 (2021).

    Google Scholar 

  51. Dakos, V. et al. Indicators of tipping points in ecological systems. Nat. Ecol. Evol. 5, 620–632. https://doi.org/10.1038/s41559-020-01313-9 (2021).

    Google Scholar 

  52. Pareek, S., & Baghel, R. S. Controlling cyanobacterial blooms using a biological filter-feeding and aggregation effect. Iran. J. Sci. pp. 1–12, (Springer, 2025)

  53. Schindler, D. W. Eutrophication and recovery in experimental lakes: Implications for lake management. Science 184(4139), 897–899. https://doi.org/10.1126/science.184.4139.897 (1974).

    Google Scholar 

  54. Carpenter, S. R. Phosphorus control is critical to mitigating eutrophication. Proc. Natl. Acad. Sci. 105(32), 11039–11040. https://doi.org/10.1073/pnas.0806112105 (2008).

    Google Scholar 

  55. Vollenweider, R. A. Scientific Fundamentals of the Eutrophication of Lakes and Flowing Waters. OECD. (1968).

  56. Smith, V. H. & Schindler, D. W. Eutrophication science: Where do we go from here-. Trends Ecol. Evol. 24(4), 201–207. https://doi.org/10.1016/j.tree.2008.11.009 (2009).

    Google Scholar 

  57. Hansell, D. A. & Carlson, C. A. Marine dissolved organic matter and the carbon cycle. Oceanography 14(4), 41–49. https://doi.org/10.5670/oceanog.2001.05 (2001).

    Google Scholar 

  58. Li, M. et al. Global trends in cyanobacterial harmful algal blooms. Nat. Commun. 12, 5859. https://doi.org/10.1038/s41467-021-26188-0 (2021).

    Google Scholar 

  59. Baghel, R. S. A toxins role in controlling chaos with a spatial effect in an aquatic systems. Int. J. Appl. Comput. Math. 11(3), 99 (2025) (Springer).

    Google Scholar 

  60. Baghel, R. S. Spatiotemporal dynamics of toxin producing phytoplankton-zooplankton interactions with Holling Type II functional responses. Results Control Optim. 17, 100478 (2024) (Elsevier).

    Google Scholar 

  61. Skalski, G. T. & Gilliam, J. F. Functional responses with predator interference: Viable alternatives to the Holling type II model. Ecology 82(11), 3083–3092 (2001).

    Google Scholar 

  62. Hairer, E., Norsett, S. P. & Wanner, G. Solving Ordinary Differential Equations I: Nonstiff Problems 2nd ed. (Springer, 2008). https://doi.org/10.1007/978-3-540-78862-1.

    Google Scholar 

  63. Butcher, J. C. Numerical Methods for Ordinary Differential Equations 3rd ed. (Wiley, 2016). https://doi.org/10.1002/9781119121534.

    Google Scholar 

  64. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes: The Art of Scientific Computing 3rd ed. (Cambridge University Press, 2007).

    Google Scholar 

Download references

Funding

Open access funding provided by Manipal Academy of Higher Education, Manipal. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

R.S.B. and S.V. conceptualized and designed the study. R.S.B. conducted the experimental work and data collection. S.V. performed the data analysis and interpretation. N.K. contributed to reviewing, editing, and redrafting the manuscript and handled the correspondence. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to
Narendra Khatri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Declaration on the use of AI

The authors declare that Artificial Intelligence (AI) tools, including QuillBot, were used for paraphrasing and redrafting portions of the manuscript with the aim of improving clarity and readability. All AI-generated content was critically reviewed, verified, and edited by the authors to ensure accuracy, originality, and conformity with academic standards. The authors take full responsibility for the integrity and reliability of the final manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Baghel, R.S., Verma, S. & Khatri, N. Delayed dynamics and detoxification in nutrient-phytoplankto-by-product systems: mechanisms driving bloom stability and oscillations.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-32146-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-32146-z

Keywords

  • Phytoplankton-nutrient dynamics
  • Beddington-DeAngelis uptake
  • By-product interference (allelopathy)
  • Stability and Hopf bifurcation
  • Global sensitivity analysis (Sobol, PRCC)
  • Delay


Source: Ecology - nature.com

Marine fishery resource dynamic prediction based on CNN-XGBoost fusion model

Enhanced tropical cyclone precipitation variability is linked to Pacific Decadal Oscillation since the 1940s

Back to Top