in

Detection of energetic equivalence depends on food web architecture and estimators of energy use


Abstract

Ecologists have long debated the universality of the energetic equivalence rule, which posits that population energy use should be invariant with average body size due to negative size–density scaling. We explore size–density and size–energy use scaling across 183 geographically–distributed soil invertebrate food webs (comprising 55,054 individual soil invertebrates) to investigate the universality of these fundamental energetic equivalence rule assumptions across trophic levels and varying food web structure. Additionally, we compare two measures of energy use to investigate size–energy use relationships: population metabolism and energy fluxes. We find that size–density scaling does not support energetic equivalence in soil communities. Furthermore, evidence of energetic equivalence is dependent on the estimate of energy use applied, the trophic level of consumers, and food web properties. Our study demonstrates a need to integrate food web energetics and trophic structure to better understand how energetic constraints shape the body size structure of terrestrial ecosystems.

Similar content being viewed by others

A species-level multi-trophic metaweb for Switzerland

The productivity–stability trade-off in global food systems

A network simplification approach to ease topological studies about the food-web architecture

Data availability

The data generated in this study has been deposited in the figshare repository https://doi.org/10.6084/m9.figshare.25591254.v1. The raw EFForTS and ECOWORM data are protected and are not available due to data privacy laws. Source data are provided with this paper.

Code availability

The code generated in this study has been deposited in the figshare repository https://doi.org/10.6084/m9.figshare.25591227.v1.

References

  1. Hatton, I. A., Dobson, A. P., Storch, D., Galbraith, E. D. & Loreau, M. Linking scaling laws across eukaryotes. Proc. Natl. Acad. Sci. Usa. 116, 21616–21622 (2019).

    Google Scholar 

  2. Cohen, J. E., Jonsson, T. & Carpenter, S. R. Ecological community description using the food web, species abundance, and body size. Proc. Natl. Acad. Sci. USA 100, 1781–1786 (2003).

    Google Scholar 

  3. Woodward, G. et al. Body size in ecological networks. Trends Ecol. Evol. 20, 402–409 (2005).

    Google Scholar 

  4. Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Google Scholar 

  5. Damuth, J. Interspecific allometry of population density in mammals and other animals: the independence of body mass and population energy-use. Biol. J. Linn. Soc. 31, 193–246 (1987).

    Google Scholar 

  6. Meehan, T. D. Energy use and animal abundance in litter and soil communities. Ecology 87, 1650–1658 (2006).

    Google Scholar 

  7. Meehan, T. D. Mass and temperature dependence of metabolic rate in litter and soil invertebrates. Physiol. Biochem. Zool. 79, 878–884 (2006).

    Google Scholar 

  8. Ott, D. et al. Litter elemental stoichiometry and biomass densities of forest soil invertebrates. Oikos 123, 1212–1223 (2014).

    Google Scholar 

  9. Ott, D. et al. Unifying elemental stoichiometry and metabolic theory in predicting species abundances. Ecol. Lett. 17, 1247–1256 (2014).

    Google Scholar 

  10. Antunes, A. C. et al. Environmental drivers of local abundance–mass scaling in soil animal communities. Oikos 2023, e09735 (2023).

    Google Scholar 

  11. Mulder, C. & Elser, J. J. Soil acidity, ecological stoichiometry and allometric scaling in grassland food webs. Glob. Change Biol. 15, 2730–2738 (2009).

    Google Scholar 

  12. Cyr, H., Downing, J. A., Peters, R. H. & Cyr, H. Density-body size relationships in local aquatic communities. Oikos 79, 333 (1997).

    Google Scholar 

  13. Cyr, H., Peters, R. H., Downing, J. A. & Cyr, H. Population density and community xize structure: comparison of aquatic and terrestrial systems. Oikos 80, 139 (1997).

    Google Scholar 

  14. White, E. P., Ernest, S. K. M., Kerkhoff, A. J. & Enquist, B. J. Relationships between body size and abundance in ecology. Trends Ecol. Evol. 22, 323–330 (2007).

    Google Scholar 

  15. Ehnes, R. B. et al. Lack of energetic equivalence in forest soil invertebrates. Ecology 95, 527–537 (2014).

    Google Scholar 

  16. Damuth, J. Population density and body size in mammals. Nature 290, 699–700 (1981).

    Google Scholar 

  17. Meehan, T. D. et al. Energetic equivalence in a soil arthropod community from an aspen–conifer forest. Pedobiologia 50, 307–312 (2006).

    Google Scholar 

  18. Trebilco, R., Baum, J. K., Salomon, A. K. & Dulvy, N. K. Ecosystem ecology: size-based constraints on the pyramids of life. Trends Ecol. Evol. 28, 423–431 (2013).

    Google Scholar 

  19. Reuman, D. C., Mulder, C., Raffaelli, D. & Cohen, J. E. Three allometric relations of population density to body mass: theoretical integration and empirical tests in 149 food webs. Ecol. Lett. 11, 1216–1228 (2008).

    Google Scholar 

  20. Reuman, D. C. et al. Chapter 1 allometry of body size and abundance in 166 food webs. in Advances in Ecological Research vol. 41 1–44 (Elsevier, 2009).

  21. Arim, M., Abades, S. R., Laufer, G., Loureiro, M. & Marquet, P. A. Food web structure and body size: trophic position and resource acquisition. Oikos 119, 147–153 (2010).

    Google Scholar 

  22. Gjoni, V. & Glazier, D. S. A perspective on body size and abundance relationships across ecological communities. Biology 9, 42 (2020).

    Google Scholar 

  23. Mulder, C., Vonk, J. A., Den Hollander, H. A., Hendriks, A. J. & Breure, A. M. How allometric scaling relates to soil abiotics. Oikos 120, 529–536 (2011).

    Google Scholar 

  24. Gjoni, V., Marle, P., Ibelings, B. W. & Castella, E. Size–abundance relationships of freshwater macroinvertebrates in two contrasting floodplain channels of rhone river. Water 14, 794 (2022).

    Google Scholar 

  25. Gjoni, V., Glazier, D. S., Wesner, J. S., Ibelings, B. W. & Thomas, M. K. Temperature, resources and predation interact to shape phytoplankton size–abundance relationships at a continental scale. Glob. Ecol. Biogeogr. 32, 2006–2016 (2023).

    Google Scholar 

  26. Gjoni, V., Cozzoli, F., Rosati, I. & Basset, A. Size–density relationships: a cross-community approach to benthic macroinvertebrates in mediterranean and black sea lagoons. Estuaries Coasts 40, 1142–1158 (2017).

    Google Scholar 

  27. Loeuille, N. & Loreau, M. Evolution of body size in food webs: does the energetic equivalence rule hold? Ecol. Lett. 9, 171–178 (2006).

    Google Scholar 

  28. Barnes, A. D. et al. Energy flux: the link between multitrophic biodiversity and ecosystem functioning. Trends Ecol. Evol. 33, 186–197 (2018).

    Google Scholar 

  29. Gauzens, B. et al. Fluxweb: package to easily estimate energy fluxes in food webs. Methods Ecol. Evol. 10, 270–279 (2019).

    Google Scholar 

  30. Rooney, N., McCann, K. S. & Moore, J. C. A landscape theory for food web architecture. Ecol. Lett. 11, 867–881 (2008).

    Google Scholar 

  31. Polis, G. A. & Strong, D. R. Food web complexity and community dynamics. Am. Naturalist 147, 813–846 (1996).

    Google Scholar 

  32. Eisenhauer, N. Aboveground–belowground interactions as a source of complementarity effects in biodiversity experiments. Plant Soil 351, 1–22 (2012).

    Google Scholar 

  33. Lembrechts, J. J. et al. Global maps of soil temperature. Glob. Change Biol. 28, 3110–3144 (2022).

    Google Scholar 

  34. Potapov, A. M. et al. Size compartmentalization of energy channeling in terrestrial belowground food webs. Ecology 102, e03421 (2021).

    Google Scholar 

  35. Glazier, D. S. Variable metabolic scaling breaks the law: from ‘Newtonian’ to ‘Darwinian’ approaches. Proc. R. Soc. B. 289, 20221605 (2022).

    Google Scholar 

  36. Romera, P. J. et al. Ecological succession shapes size–density scaling relationships of trees and soil invertebrates. Funct. Ecol. 38, 2156–2168 (2024).

    Google Scholar 

  37. Potapov, A. M., Klarner, B., Sandmann, D., Widyastuti, R. & Scheu, S. Linking size spectrum, energy flux and trophic multifunctionality in soil food webs of tropical land-use systems. J. Anim. Ecol. 88, 1845–1859 (2019).

    Google Scholar 

  38. Damuth, J. A macroevolutionary explanation for energy equivalence in the scaling of body size and population density. Am. Naturalist 169, 621–631 (2007).

    Google Scholar 

  39. Poisot, T., Mouquet, N. & Gravel, D. Trophic complementarity drives the biodiversity–ecosystem functioning relationship in food webs. Ecol. Lett. 16, 853–861 (2013).

    Google Scholar 

  40. Ulrich, W. et al. Temporal patterns of energy equivalence in temperate soil invertebrates. Oecologia 179, 271–280 (2015).

    Google Scholar 

  41. Drescher, J. et al. Ecological and socio-economic functions across tropical land use systems after rainforest conversion. Philos. Trans. R. Soc. B 371, 20150275 (2016).

    Google Scholar 

  42. Jochum, M. et al. Earthworm invasion causes declines across soil fauna size classes and biodiversity facets in northern North American forests. Oikos 130, 766–780 (2021).

    Google Scholar 

  43. Naumann, I. D. The Insects of Australia: A Textbook for Students and Research Workers: Free Download, Borrow, and Streaming: Internet Archive. (Melbourne University Press, 1991).

  44. Barnes, A. D. et al. Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning. Nat. Commun. 5, 5351 (2014).

    Google Scholar 

  45. Mercer, R. D., Gabriel, A. G. A., Barendse, J., Marshall, D. J. & Chown, S. L. Invertebrate body sizes from Marion Island. Antartic Sci. 13, 135–143 (2001).

    Google Scholar 

  46. Sohlström, E. H. et al. Applying generalized allometric regressions to predict live body mass of tropical and temperate arthropods. Ecol. Evol. 8, 12737–12749 (2018).

    Google Scholar 

  47. Ehnes, R. B., Rall, B. C. & Brose, U. Phylogenetic grouping, curvature and metabolic scaling in terrestrial invertebrates: invertebrate metabolism. Ecol. Lett. 14, 993–1000 (2011).

    Google Scholar 

  48. Potapov, A. M. et al. Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biol. Rev. 97, 1057–1117 (2022).

    Google Scholar 

  49. Barnes, A. D. et al. Biodiversity enhances the multitrophic control of arthropod herbivory. Sci. Adv. 6, eabb6603 (2020).

    Google Scholar 

  50. Lang, B., Ehnes, R. B., Brose, U. & Rall, B. C. Temperature and consumer type dependencies of energy flows in natural communities. Oikos 126, 1717–1725 (2017).

    Google Scholar 

  51. De Ruiter, P. C., Van Veen, J. A., Moore, J. C., Brussaard, L. & Hunt, H. W. Calculation of nitrogen mineralization in soil food webs. Plant Soil 157, 263–273 (1993).

    Google Scholar 

  52. Perkins, D. M. et al. Energetic equivalence underpins the size structure of tree and phytoplankton communities. Nat. Commun. 10, 255 (2019).

    Google Scholar 

  53. Edwards, A. M., Robinson, J. P. W., Plank, M. J., Baum, J. K. & Blanchard, J. L. Testing and recommending methods for fitting size spectra to data. Methods Ecol. Evol. 8, 57–67 (2017).

    Google Scholar 

  54. R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing (R Core Team, 2023).

  55. Legendre, P. Model II regression user’s guide, R edition. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://cran.r-project.org/web/packages/lmodel2/vignettes/mod2user.pdf (2018)

Download references

Acknowledgements

Our project was supported by the Marsden Fund Council from Government funding managed by Royal Society Te Apārangi (grant MFP-23-UOW-029), and the People, Cities, and Nature research programme (Ministry of Business, Innovation and Employment, grant UOWX2101). We thank the numerous people that assisted in the field and laboratory and mana whenua (Indigenous people) of the land our sites were on. We acknowledge the use of data drawn from the EFForTS and ECOWORM projects. All authors gratefully acknowledge the support of iDiv, which is funded by the German Research Foundation (DFG – FZT 118, 202548816). N.E. and O.F. thank the DFG (Ei 862/29–1; Ei 862/31–1) for funding. Fig. 1, and Fig. 2 were created with Canva.com using images and elements of these images created by authors (see supplementary code). A.P. was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Projektnummer 493345801.

Author information

Authors and Affiliations

Authors

Contributions

P.J.R. and A.D.B. conceived the study. P.J.R., A.D.B., A.P., B.R., G.M., K.J.W., M.J., S.S., D.O., M.R.H., U.B., N.E., and O.F. collected and processed the soil data. A.C.A. curated and processed the EFForTS and ECOWORM soil data. P.J.R. and B.G. analysed the data. P.J.R. and A.D.B. wrote the first draft of the manuscript, and all authors contributed substantially to revisions.

Corresponding author

Correspondence to
Poppy Joaquina Romera.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Matias Arim, Douglas Glazier, and Peter de Ruiter for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Romera, P.J., Gauzens, B., Antunes, A.C. et al. Detection of energetic equivalence depends on food web architecture and estimators of energy use.
Nat Commun (2025). https://doi.org/10.1038/s41467-025-67615-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41467-025-67615-6


Source: Ecology - nature.com

Enhancing demarcation in regionalization in the eastern Qinghai-Xizang Plateau through geographically weighted

Satellite altimetry reveals intensifying global river water level variability

Back to Top