in

Molecular signatures and machine learning driven stress biomarkers for rainbow trout aquaculture and climate adaptation


Abstract

Climate-induced stressors pose significant threats to fish growth, survival, and ecological stability. Identifying reliable molecular biomarkers is crucial for improving stress management and acclimation strategies. This study employed a comprehensive transcriptomic analysis to examine stress responses in rainbow trout (Oncorhynchus mykiss) exposed to five distinct environmental stressors—high and low temperatures, crowding, salinity, and low water quality (characterized by reduced dissolved oxygen and elevated CO2)—over six hours. A total of 21,580 differentially expressed transcripts (DETs) were identified, including 16,959 unique DETs. Heat stress and salinity induced the most pronounced transcriptomic responses, with most DETs being stressor-specific, highlighting distinct physiological acclimation mechanisms. Only 39 DETs were consistently regulated across all stress conditions. Key DETs associated with heat stress were further analyzed using machine learning models to evaluate their predictive potential in distinguishing control and heat-stressed fish from natural Redband trout populations. The logistic model tree (LMT) classifier demonstrated the highest accuracy with a set of 234 DETs. When the dataset was reduced to 50 or 2 DETs, the Random Forest model achieved optimal classification, consistently identifying two heat shock protein transcripts, hsp47 and hspa4l, as primary predictors across both short- and long-term stress responses. In contrast, core DETs shared across stressors exhibited limited predictive power, achieving only 52.78% classification accuracy. These findings underscore the specificity of molecular signatures to individual stressors and highlight the potential of transcriptomic biomarkers for monitoring climate-induced stress in fish populations. The study recommends the integration of these biomarkers into selective breeding programs and conservation strategies to enhance fish resilience and welfare in the face of environmental change.

Similar content being viewed by others

Comparative study of fish adaptation at cellular and genetic levels across eco-sensitive zones with contrasting oxygen and temperature regimes

Acclimation to higher temperature and antioxidant supplemented diets improved rainbow trout (Oncorhynchus mykiss) resilience to heatwaves

IoT and ML approach for ornamental fish behaviour analysis

Data availability

The raw sequencing data from three strains of Redband trout were downloaded from the NCBI Short Read Archive (SRA) under accession number PRJNA233945. The rainbow trout genome annotation was obtained from NCBI (GCA_013265735.3, https://www.ncbi.nlm.nih.gov/assembly/ GCF_013265735.2/). Additionally, RNA-seq datasets from fish exposed to five different stress conditions were retrieved from the NCBI Sequence Read Archive (SRA) using the accession number SRP070774.

References

  1. Huang, J., Li, Y., Liu, Z., Kang, Y. & Wang, J. Transcriptomic responses to heat stress in rainbow trout Oncorhynchus mykiss head kidney. Fish Shellfish Immunol. 82, 32–40. https://doi.org/10.1016/j.fsi.2018.08.002 (2018).

    Google Scholar 

  2. Komatsu, E., Fukushima, T. & Harasawa, H. A modeling approach to forecast the effect of long-term climate change on lake water quality. Ecol. Model. 209, 351–366. https://doi.org/10.1016/j.ecolmodel.2007.07.021 (2007).

    Google Scholar 

  3. Whitehead, P. G., Wilby, R. L., Battarbee, R. W., Kernan, M. & Wade, A. J. A review of the potential impacts of climate change on surface water quality. Hydrol. Sci. J. 54, 101–123. https://doi.org/10.1623/hysj.54.1.101 (2009).

    Google Scholar 

  4. Mooij, W. M., De Senerpont Domis, L. N. & Janse, J. H. Linking species- and ecosystem-level impacts of climate change in lakes with a complex and a minimal model. Ecol. Model. 220, 3011–3020. https://doi.org/10.1016/j.ecolmodel.2009.02.003 (2009).

    Google Scholar 

  5. Isangedighi I, Asuquo & Afia O. Climate change: Its Effect on water quality and fish growth. 10, 326-338 (2023)

  6. Dediu, L. et al. Effects of stocking density on growth performance and stress responses of bester and bester female symbol x beluga male symbol juveniles in recirculating aquaculture systems. Animals: Open Access J.MDPI https://doi.org/10.3390/ani11082292 (2021).

    Google Scholar 

  7. Ali, A., Thorgaard, G. H. & Salem, M. PacBio Iso-Seq improves the rainbow trout genome annotation and identifies alternative splicing associated with economically important phenotypes. Front Genet 12, 683408. https://doi.org/10.3389/fgene.2021.683408 (2021).

    Google Scholar 

  8. Liu, S. et al. RNA-seq analysis of early hepatic response to handling and confinement stress in rainbow trout. PLoS ONE 9, e88492. https://doi.org/10.1371/journal.pone.0088492 (2014).

    Google Scholar 

  9. NOAA. (ed National Marine Fisheries Service) (2022).

  10. Weber, G. M. & Silverstein, J. T. Evaluation of a stress response for use in a selective breeding program for improved growth and disease resistance in rainbow trout. N. Am. J. Aquac. 69, 69–79. https://doi.org/10.1577/a05-103.1 (2007).

    Google Scholar 

  11. Rexroad, C. E., Vallejo, R. L., Liu, S., Palti, Y. & Weber, G. M. Quantitative trait loci affecting response to crowding stress in an F(2) generation of rainbow trout produced through phenotypic selection. Marine Biotechnol. 15, 613–627. https://doi.org/10.1007/s10126-013-9512-5 (2013).

    Google Scholar 

  12. Smith, S., Bernatchez, L. & Beheregaray, L. B. RNA-seq analysis reveals extensive transcriptional plasticity to temperature stress in a freshwater fish species. BMC Genomics 14, 375. https://doi.org/10.1186/1471-2164-14-375 (2013).

    Google Scholar 

  13. Liu, S. et al. RNA-Seq reveals expression signatures of genes involved in oxygen transport, protein synthesis, folding, and degradation in response to heat stress in catfish. Physiol. Genomics 45, 462–476. https://doi.org/10.1152/physiolgenomics.00026.2013 (2013).

    Google Scholar 

  14. Sun, J. et al. RNA-seq analysis reveals alternative splicing under heat stress in rainbow trout (Oncorhynchus mykiss). Marine Biotechnol. 24, 5–17. https://doi.org/10.1007/s10126-021-10082-z (2022).

    Google Scholar 

  15. Hou, Z. S. et al. Transcriptional Profiles of genes related to stress and immune response in rainbow trout (Oncorhynchus mykiss) symptomatically or asymptomatically infected with vibrio anguillarum. Front. Immunol. 12, 639489. https://doi.org/10.3389/fimmu.2021.639489 (2021).

    Google Scholar 

  16. Quan, J. et al. Identification and characterization of long noncoding RNAs provide insight into the regulation of gene expression in response to heat stress in rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. Part D Genomics Proteomics 36, 100707. https://doi.org/10.1016/j.cbd.2020.100707 (2020).

    Google Scholar 

  17. Quan, J. et al. Integrated analysis of the responses of a circRNA-miRNA-mRNA ceRNA network to heat stress in rainbow trout (Oncorhynchus mykiss) liver. BMC Genomics 22, 48. https://doi.org/10.1186/s12864-020-07335-x (2021).

    Google Scholar 

  18. Zhao, G. et al. Ribosome profiling and RNA sequencing reveal translation and transcription regulation under acute heat stress in rainbow trout (Oncorhynchus mykiss, Walbaum, 1792) Liver. Int. J. Mol. Sci. 25, 8848. https://doi.org/10.3390/ijms25168848 (2024).

    Google Scholar 

  19. Narum, S. R. & Campbell, N. R. Transcriptomic response to heat stress among ecologically divergent populations of redband trout. BMC Genomics 16, 103. https://doi.org/10.1186/s12864-015-1246-5 (2015).

    Google Scholar 

  20. Narum, S. R., Campbell, N. R., Kozfkay, C. C. & Meyer, K. A. Adaptation of redband trout in desert and montane environments. Mol Ecol 19, 4622–4637. https://doi.org/10.1111/j.1365-294X.2010.04839.x (2010).

    Google Scholar 

  21. Rehrauer, H., Opitz, L., Tan, G., Sieverling, L. & Schlapbach, R. Blind spots of quantitative RNA-seq: the limits for assessing abundance, differential expression, and isoform switching. BMC Bioinform. 14, 370. https://doi.org/10.1186/1471-2105-14-370 (2013).

    Google Scholar 

  22. Hirsch, C. D., Springer, N. M. & Hirsch, C. N. Genomic limitations to RNA sequencing expression profiling. Plant J. Cell Mol. Biol. 84, 491–503. https://doi.org/10.1111/tpj.13014 (2015).

    Google Scholar 

  23. Sahraeian, S. M. E. et al. Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis. Nat. Commun. 8, 59. https://doi.org/10.1038/s41467-017-00050-4 (2017).

    Google Scholar 

  24. Rajkumar, A. P. et al. Experimental validation of methods for differential gene expression analysis and sample pooling in RNA-seq. BMC Genomics 16, 548. https://doi.org/10.1186/s12864-015-1767-y (2015).

    Google Scholar 

  25. Fang, Z., Martin, J. & Wang, Z. Statistical methods for identifying differentially expressed genes in RNA-Seq experiments. Cell Biosci. 2, 26. https://doi.org/10.1186/2045-3701-2-26 (2012).

    Google Scholar 

  26. Ozsolak, F. & Milos, P. M. RNA sequencing: Advances, challenges and opportunities. Nat. Rev. Genet. 12, 87–98. https://doi.org/10.1038/nrg2934 (2011).

    Google Scholar 

  27. Wang, L., Xi, Y., Sung, S. & Qiao, H. RNA-seq assistant: Machine learning based methods to identify more transcriptional regulated genes. BMC Genomics 19, 546. https://doi.org/10.1186/s12864-018-4932-2 (2018).

    Google Scholar 

  28. Mjolsness, E. & DeCoste, D. Machine learning for science: State of the art and future prospects. Science 293, 2051–2055. https://doi.org/10.1126/science.293.5537.2051 (2001).

    Google Scholar 

  29. Kan, A. Machine learning applications in cell image analysis. Immunol. Cell Biol. 95, 525–530. https://doi.org/10.1038/icb.2017.16 (2017).

    Google Scholar 

  30. Vidyasagar, M. Machine learning methods in the computational biology of cancer. Proceed. Math. Phys. Eng. Sci. 470, 20140081. https://doi.org/10.1098/rspa.2014.0081 (2014).

    Google Scholar 

  31. Zhang, J. et al. Computer vision and machine learning for robust phenotyping in genome-wide studies. Sci. Rep. 7, 44048. https://doi.org/10.1038/srep44048 (2017).

    Google Scholar 

  32. Li, J., Ching, T., Huang, S. & Garmire, L. X. Using epigenomics data to predict gene expression in lung cancer. BMC Bioinform. https://doi.org/10.1186/1471-2105-16-S5-S10 (2015).

    Google Scholar 

  33. Ma, C., Xin, M., Feldmann, K. A. & Wang, X. Machine learning-based differential network analysis: A study of stress-responsive transcriptomes in Arabidopsis. Plant Cell 26, 520–537. https://doi.org/10.1105/tpc.113.121913 (2014).

    Google Scholar 

  34. Zhang, Y. et al. Wearable bioimpedance-based deep learning techniques for live fish health assessment under waterless and low-temperature conditions. Sensors 23, 8210. https://doi.org/10.3390/s23198210 (2023).

    Google Scholar 

  35. Fandino Pelayo, J. S., Mendoza Castellanos, L. S., Cazes Ortega, R. & Hernandez-Rojas, L. G. AI-driven monitoring for fish welfare in aquaponics: A predictive approach. Sensors 25, 6107. https://doi.org/10.3390/s25196107 (2025).

    Google Scholar 

  36. Zhu, Y., Zhang, W., Zhang, Y. & Zhang, X. Fish vitality assessment under adversity stress based on multi-sensing fusion and deep learning techniques. Aquaculture 609, 742871. https://doi.org/10.1016/j.aquaculture.2025.742871 (2025).

    Google Scholar 

  37. Sanchez, C. C. et al. Generation of a reference transcriptome for evaluating rainbow trout responses to various stressors. BMC Genomics 12, 626. https://doi.org/10.1186/1471-2164-12-626 (2011).

    Google Scholar 

  38. Silverstein, J. T., Rexroad, C. E. & King, T. L. Genetic variation measured by microsatellites among three strains of domesticated rainbow trout (Oncorhynchus mykiss, Walbaum). Aquac. Res. 35, 40–48. https://doi.org/10.1111/j.1365-2109.2004.00979.x (2004).

    Google Scholar 

  39. Weber, G. M., Vallejo, R. L., Lankford, S. E., Silverstein, J. T. & Welch, T. J. Cortisol Response to a Crowding Stress: Heritability and Association with Disease Resistance to Yersinia ruckeri in Rainbow Trout. N. Am. J. Aquac. 70, 425–433. https://doi.org/10.1577/a07-059.1 (2008).

    Google Scholar 

  40. Pottinger, T. G. & Carrick, T. R. Modification of the plasma cortisol response to stress in rainbow trout by selective breeding. Gen. Comp. Endocrinol. 116, 122–132. https://doi.org/10.1006/gcen.1999.7355 (1999).

    Google Scholar 

  41. Hall, M. et al. The WEKA data mining software. ACM SIGKDD Explorations Newsl 11, 10–18. https://doi.org/10.1145/1656274.1656278 (2009).

    Google Scholar 

  42. Pedregosa, F. et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  43. Ge, S. X., Jung, D. & Yao, R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics (Oxford, England) 36, 2628–2629. https://doi.org/10.1093/bioinformatics/btz931 (2020).

    Google Scholar 

  44. Newell, A. J., Jima, D., Reading, B. & Patisaul, H. B. Machine learning reveals common transcriptomic signatures across rat brain and placenta following developmental organophosphate ester exposure. Toxicol. Sci. 195, 103–122. https://doi.org/10.1093/toxsci/kfad062 (2023).

    Google Scholar 

  45. Pan, H., Xu, R. & Zhang, Y. Role of SPRY4 in health and disease. Front. Oncol. 14, 1376873. https://doi.org/10.3389/fonc.2024.1376873 (2024).

    Google Scholar 

  46. Jiang, W. I. et al. Early-life stress triggers long-lasting organismal resilience and longevity via tetraspanin. Sci. Adv. 10, eadj3880. https://doi.org/10.1126/sciadv.adj3880 (2024).

    Google Scholar 

  47. Mani, B. et al. Tetraspanin 5 orchestrates resilience to salt stress through the regulation of ion and reactive oxygen species homeostasis in rice. Plant Biotechnol. J. 23, 51–71. https://doi.org/10.1111/pbi.14476 (2025).

    Google Scholar 

  48. Costa, A., Hood, I. V. & Berger, J. M. Mechanisms for initiating cellular DNA replication. Annu. Rev. Biochem. 82, 25–54. https://doi.org/10.1146/annurev-biochem-052610-094414 (2013).

    Google Scholar 

  49. Masai, H., Matsumoto, S., You, Z., Yoshizawa-Sugata, N. & Oda, M. Eukaryotic chromosome DNA replication: where, when, and how?. Annu. Rev. Biochem. 79, 89–130. https://doi.org/10.1146/annurev.biochem.052308.103205 (2010).

    Google Scholar 

  50. Alvarez, S. et al. Replication stress caused by low MCM expression limits fetal erythropoiesis and hematopoietic stem cell functionality. Nat. Commun. 6, 8548. https://doi.org/10.1038/ncomms9548 (2015).

    Google Scholar 

  51. Ninomiya, K. et al. LncRNA-dependent nuclear stress bodies promote intron retention through SR protein phosphorylation. EMBO J. 39, e102729. https://doi.org/10.15252/embj.2019102729 (2020).

    Google Scholar 

  52. Islas, S., Vega, J., Ponce, L. & Gonzalez-Mariscal, L. Nuclear localization of the tight junction protein ZO-2 in epithelial cells. Exp. Cell Res. 274, 138–148. https://doi.org/10.1006/excr.2001.5457 (2002).

    Google Scholar 

  53. Traweger, A. et al. The tight junction protein ZO-2 localizes to the nucleus and interacts with the heterogeneous nuclear ribonucleoprotein scaffold attachment factor-B. J. Biol. Chem. 278, 2692–2700. https://doi.org/10.1074/jbc.M206821200 (2003).

    Google Scholar 

  54. Chang, S. W. et al. Heat stress activates interleukin-8 and the antioxidant system via Nrf2 pathways in human dental pulp cells. J. Endodontics 35, 1222–1228. https://doi.org/10.1016/j.joen.2009.06.005 (2009).

    Google Scholar 

  55. Wang, Z., Zhang, H. & Cheng, Q. PDIA4: The basic characteristics, functions and its potential connection with cancer. Biomed. Pharmacother 122, 109688. https://doi.org/10.1016/j.biopha.2019.109688 (2020).

    Google Scholar 

  56. Hu, L. et al. The HSP90AA1 gene is involved in heat stress responses and its functional genetic polymorphisms are associated with heat tolerance in Holstein cows. J. Dairy Sci. 107, 5132–5149. https://doi.org/10.3168/jds.2023-24007 (2024).

    Google Scholar 

  57. Srikanth, K., Kwon, A., Lee, E. & Chung, H. Characterization of genes and pathways that respond to heat stress in Holstein calves through transcriptome analysis. Cell Stress Chaperones 22, 29–42. https://doi.org/10.1007/s12192-016-0739-8 (2017).

    Google Scholar 

  58. Videla Rodriguez, E. A., Mitchell, J. B. O. & Smith, V. A. Robust identification of interactions between heat-stress responsive genes in the chicken brain using Bayesian networks and augmented expression data. Sci. Rep. 14, 9019. https://doi.org/10.1038/s41598-024-58679-3 (2024).

    Google Scholar 

  59. Elliott, E. N., Sheaffer, K. L. & Kaestner, K. H. The ‘de novo’ DNA methyltransferase Dnmt3b compensates the Dnmt1-deficient intestinal epithelium. Elife 5, e12975. https://doi.org/10.7554/eLife.12975 (2016).

    Google Scholar 

  60. Korotko, U., Chwialkowska, K., Sanko-Sawczenko, I. & Kwasniewski, M. DNA demethylation in response to heat stress in Arabidopsis thaliana. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22041555 (2021).

    Google Scholar 

  61. Singh, A. K. et al. Genome-wide expression analysis of the heat stress response in dermal fibroblasts of Tharparkar (zebu) and Karan-Fries (zebu x taurine) cattle. Cell Stress Chaperones 25, 327–344. https://doi.org/10.1007/s12192-020-01076-2 (2020).

    Google Scholar 

  62. Smolenski, R. T. et al. AMP deaminase 1 gene polymorphism and heart disease-a genetic association that highlights new treatment. Cardiovasc Drugs Ther 28, 183–189. https://doi.org/10.1007/s10557-013-6506-5 (2014).

    Google Scholar 

  63. Wang, L. et al. Integrative multiomics analysis of the heat stress response of enterococcus faecium. Biomolecules 13, 437 (2023).

    Google Scholar 

  64. Guo, D. C. et al. MAT2A mutations predispose individuals to thoracic aortic aneurysms. Am. J. Hum. Genet. 96, 170–177. https://doi.org/10.1016/j.ajhg.2014.11.015 (2015).

    Google Scholar 

  65. Sekhar, R. V. et al. Deficient synthesis of glutathione underlies oxidative stress in aging and can be corrected by dietary cysteine and glycine supplementation. Am. J. Clin. Nutr. 94, 847–853. https://doi.org/10.3945/ajcn.110.003483 (2011).

    Google Scholar 

  66. Smith, P. G., Roy, C., Zhang, Y. N. & Chauduri, S. Mechanical stress increases RhoA activation in airway smooth muscle cells. Am. J. Respir. Cell Mol. Biol. 28, 436–442. https://doi.org/10.1165/rcmb.4754 (2003).

    Google Scholar 

  67. Williams, J. L. et al. Abstract P2005: Loss of full-length Mylk3 causes dilated cardiomyopathy via a Myl2-independent mechanism. Circul. Res. 131, AP2005–AP2005. https://doi.org/10.1161/res.131.suppl_1.P2005 (2022).

    Google Scholar 

  68. Bonam, S. R., Ruff, M. & Muller, S. HSPA8/HSC70 in immune disorders: A molecular rheostat that adjusts chaperone-mediated autophagy substrates. Cells 8, 849. https://doi.org/10.3390/cells8080849 (2019).

    Google Scholar 

  69. Fusakio, M. E. et al. Transcription factor ATF4 directs basal and stress-induced gene expression in the unfolded protein response and cholesterol metabolism in the liver. Mol. Biol. Cell 27, 1536–1551. https://doi.org/10.1091/mbc.E16-01-0039 (2016).

    Google Scholar 

  70. Schwab, R. A. et al. The fanconi anemia pathway maintains genome stability by coordinating replication and transcription. Mol. Cell 60, 351–361. https://doi.org/10.1016/j.molcel.2015.09.012 (2015).

    Google Scholar 

  71. Varga, T., Czimmerer, Z. & Nagy, L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochem. Biophys. Acta. 1812, 1007–1022. https://doi.org/10.1016/j.bbadis.2011.02.014 (2011).

    Google Scholar 

  72. Lee, J., Ellis, J. M. & Wolfgang, M. J. Adipose fatty acid oxidation is required for thermogenesis and potentiates oxidative stress-induced inflammation. Cell Rep. 10, 266–279. https://doi.org/10.1016/j.celrep.2014.12.023 (2015).

    Google Scholar 

  73. Yu, Y. et al. Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 7, 193. https://doi.org/10.1038/s41420-021-00579-w (2021).

    Google Scholar 

  74. Samaj, J. et al. Endocytosis, actin cytoskeleton, and signaling. Plant Physiol. 135, 1150–1161. https://doi.org/10.1104/pp.104.040683 (2004).

    Google Scholar 

  75. Leithner, K. New roles for gluconeogenesis in vertebrates. Current Opinion Syst. Biol. 28, 100389. https://doi.org/10.1016/j.coisb.2021.100389 (2021).

    Google Scholar 

  76. Bi, P. & Kuang, S. Notch signaling as a novel regulator of metabolism. Trends Endocrinol. Metab. 26, 248–255. https://doi.org/10.1016/j.tem.2015.02.006 (2015).

    Google Scholar 

  77. Chen, G., Shaw, M. H., Kim, Y. G. & Nunez, G. NOD-like receptors: role in innate immunity and inflammatory disease. Annu. Rev. Pathol. 4, 365–398. https://doi.org/10.1146/annurev.pathol.4.110807.092239 (2009).

    Google Scholar 

  78. UniProt, C. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531. https://doi.org/10.1093/nar/gkac1052 (2023).

    Google Scholar 

  79. Hostetter, D. R., Loeb, C. R., Chu, F. & Craik, C. S. Hip is a pro-survival substrate of granzyme B. J. Biol. Chem. 282, 27865–27874 (2007).

    Google Scholar 

  80. Bredemeyer, A. J., Carrigan, P. E., Fehniger, T. A., Smith, D. F. & Ley, T. J. Hop cleavage and function in granzyme B-induced apoptosis. J. Biol. Chem. 281, 37130–37141. https://doi.org/10.1074/jbc.M607969200 (2006).

    Google Scholar 

  81. Bredemeyer, A. J. et al. A proteomic approach for the discovery of protease substrates. Proc. Natl. Acad. Sci. U.S.A. 101, 11785–11790. https://doi.org/10.1073/pnas.0402353101 (2004).

    Google Scholar 

  82. Caruso, J. A. & Reiners, J. J. Proteolysis of HIP during apoptosis occurs within a region similar to the BID loop. Apoptosis 11, 1877–1885 (2006).

    Google Scholar 

  83. Boivin, W. A., Cooper, D. M., Hiebert, P. R. & Granville, D. J. Intracellular versus extracellular granzyme B in immunity and disease: Challenging the dogma. Lab Invest 89, 1195–1220. https://doi.org/10.1038/labinvest.2009.91 (2009).

    Google Scholar 

  84. Cai, W., Wei, Y., Jarnik, M., Reich, J. & Lilly, M. A. The GATOR2 component Wdr24 regulates TORC1 activity and lysosome function. PLoS Genet 12, e1006036. https://doi.org/10.1371/journal.pgen.1006036 (2016).

    Google Scholar 

  85. Li, H. et al. Physiological stress-induced corticosterone increases heme uptake via KLF4-HCP1 signaling pathway in hippocampus neurons. Sci. Rep. 7, 5745. https://doi.org/10.1038/s41598-017-06058-6 (2017).

    Google Scholar 

  86. Kim, J. S. et al. Sestrin2 inhibits mTORC1 through modulation of GATOR complexes. Sci. Rep. 5, 9502. https://doi.org/10.1038/srep09502 (2015).

    Google Scholar 

  87. Tamai, S. et al. Acute cold stress induces transient MuRF1 upregulation in the skeletal muscle of zebrafish. Biochem. Biophys. Res. Commun 608, 59–65. https://doi.org/10.1016/j.bbrc.2022.03.093 (2022).

    Google Scholar 

  88. Schulz, P., Herde, M. & Romeis, T. Calcium-dependent protein kinases: hubs in plant stress signaling and development. Plant Physiol. 163, 523–530. https://doi.org/10.1104/pp.113.222539 (2013).

    Google Scholar 

  89. Malko, M. M. et al. Effect of Exogenous Calcium on Tolerance of Winter Wheat to Cold Stress during Stem Elongation Stage. Plants (2023).

  90. Cibis, H., Biyanee, A., Dorner, W., Mootz, H. D. & Klempnauer, K. H. Characterization of the zinc finger proteins ZMYM2 and ZMYM4 as novel B-MYB binding proteins. Sci. Rep. 10, 8390. https://doi.org/10.1038/s41598-020-65443-w (2020).

    Google Scholar 

  91. Los, D. A. & Murata, N. Membrane fluidity and its roles in the perception of environmental signals. Biochem. Biophys. Acta. 1666, 142–157. https://doi.org/10.1016/j.bbamem.2004.08.002 (2004).

    Google Scholar 

  92. Greaney, J. L., Alexander, L. M. & Kenney, W. L. Sympathetic control of reflex cutaneous vasoconstriction in human aging. J. Appl. Physiol. 119, 771–782. https://doi.org/10.1152/japplphysiol.00527.2015 (2015).

    Google Scholar 

  93. Sandi, C. Stress, cognitive impairment and cell adhesion molecules. Nat. Rev. Neurosci. 5, 917–930. https://doi.org/10.1038/nrn1555 (2004).

    Google Scholar 

  94. Keebaugh, A. C., Sullivan, R. T., Program, N. C. S. & Thomas, J. W. Gene duplication and inactivation in the HPRT gene family. Genomics 89, 134–142. https://doi.org/10.1016/j.ygeno.2006.07.003 (2007).

    Google Scholar 

  95. Harrell Stewart, D. R. & Clark, G. J. Pumping the brakes on RAS – negative regulators and death effectors of RAS. J. Cell Sci. 133, jcs238865. https://doi.org/10.1242/jcs.238865 (2020).

    Google Scholar 

  96. Lapinski, P. E., Qiao, Y., Chang, C. H. & King, P. D. A role for p120 RasGAP in thymocyte positive selection and survival of naive T cells. J. immunol. 187, 151–163. https://doi.org/10.4049/jimmunol.1100178 (2011).

    Google Scholar 

  97. Garcia-Beltran, J. M. et al. The susceptibility of shi drum juveniles to betanodavirus increases with rearing densities in a process mediated by neuroactive ligand-receptor interaction. Front. Immunol. 15, 1304603. https://doi.org/10.3389/fimmu.2024.1304603 (2024).

    Google Scholar 

  98. Khalifeh, D. M., Czegledi, L. & Gulyas, G. Investigating the potential role of the pituitary adenylate cyclase-activating polypeptide (PACAP) in regulating the ubiquitin signaling pathway in poultry. Gen. Comp. Endocrinol. 356, 114577. https://doi.org/10.1016/j.ygcen.2024.114577 (2024).

    Google Scholar 

  99. de Assis Pinheiro, J. et al. Alcohol consumption, depression, overweight and cortisol levels as determining factors for NR3C1 gene methylation. Sci. Rep. 11, 6768. https://doi.org/10.1038/s41598-021-86189-z (2021).

    Google Scholar 

  100. Fransen, M., Nordgren, M., Wang, B. & Apanasets, O. Role of peroxisomes in ROS/RNS-metabolism: Implications for human disease. Biochem. Biophys. Acta. 1363–1373, 2012. https://doi.org/10.1016/j.bbadis.2011.12.001 (1822).

    Google Scholar 

  101. Wysocka, M. B., Pietraszek-Gremplewicz, K. & Nowak, D. The role of apelin in cardiovascular diseases, obesity and cancer. Front. Physiol. 9, 557. https://doi.org/10.3389/fphys.2018.00557 (2018).

    Google Scholar 

  102. Akinrotimi, O., Agokei, E. & Aranyo, A. Changes in blood parameters of Tilapia guineensis exposed to different salinity levels. J. Environ. Eng. Technol. 1, 4–12 (2012).

    Google Scholar 

  103. Baghdadi, H., El-Gharabawy, M., Zaki, M. & El-Greisy, Z. Effect of some environmental and physiological factors on the blood count of Mugil capito during the breeding season. Rapport Comm. Int. Mer Méditerranée 35, 370–371 (1998).

    Google Scholar 

  104. Bosisio, F., Rezende, K. F. O. & Barbieri, E. Alterations in the hematological parameters of juvenile Nile tilapia (Oreochromis niloticus) submitted to different salinities. Pan-American J. Aquatic Sci. 12, 146–154. https://doi.org/10.5281/zenodo.3531596 (2017).

    Google Scholar 

  105. Ali, A. et al. Repercussion of salinity on hematological parameters and tissue morphology of gill and kidney at early life of tilapia. Aquaculture Fisheries 9, 256–264. https://doi.org/10.1016/j.aaf.2022.04.006 (2024).

    Google Scholar 

  106. Mastrodonato, V., Morelli, E. & Vaccari, T. How to use a multipurpose SNARE: The emerging role of Snap29 in cellular health. Cell stress 2, 72–81. https://doi.org/10.15698/cst2018.04.130 (2018).

    Google Scholar 

  107. Pietrobon, A., Yockell-Lelievre, J., Flood, T. A. & Stanford, W. L. Renal organoid modeling of tuberous sclerosis complex reveals lesion features arise from diverse developmental processes. Cell Rep 40, 111048. https://doi.org/10.1016/j.celrep.2022.111048 (2022).

    Google Scholar 

  108. Seifikalhor, M. et al. Calcium signaling and salt tolerance are diversely entwined in plants. Plant Signal. Behav. 14, 1665455. https://doi.org/10.1080/15592324.2019.1665455 (2019).

    Google Scholar 

  109. Su, H., Ma, D., Zhu, H., Liu, Z. & Gao, F. Transcriptomic response to three osmotic stresses in gills of hybrid tilapia (Oreochromis mossambicus female x O. urolepis hornorum male). BMC Genomics 21, 110. https://doi.org/10.1186/s12864-020-6512-5 (2020).

    Google Scholar 

  110. van der Heide, T. & Poolman, B. Osmoregulated ABC-transport system of Lactococcus lactis senses water stress via changes in the physical state of the membrane. Proc. Natl. Acad. Sci. U.S.A. 97, 7102–7106. https://doi.org/10.1073/pnas.97.13.7102 (2000).

    Google Scholar 

  111. Ding, L. et al. Effects of saline-alkaline stress on metabolome, biochemical parameters, and histopathology in the kidney of crucian carp (Carassius auratus). Metabolites https://doi.org/10.3390/metabo13020159 (2023).

    Google Scholar 

  112. Perenthaler, E. et al. Loss of UGP2 in brain leads to a severe epileptic encephalopathy, emphasizing that bi-allelic isoform-specific start-loss mutations of essential genes can cause genetic diseases. Acta Neuropathol. 139, 415–442. https://doi.org/10.1007/s00401-019-02109-6 (2020).

    Google Scholar 

  113. Fukuda, R. et al. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129, 111–122. https://doi.org/10.1016/j.cell.2007.01.047 (2007).

    Google Scholar 

  114. Cristofani, R. et al. The role of HSPB8, a component of the chaperone-assisted selective autophagy machinery, in cancer. Cells 10, 335 (2021).

    Google Scholar 

  115. Chen, L., Wu, M. & Zhou, Y. HSPB8 binding to c-Myc alleviates hypoxia/reoxygenation-induced trophoblast cell dysfunction. Exp. Ther. Med. 27, 114. https://doi.org/10.3892/etm.2024.12402 (2024).

    Google Scholar 

  116. Lian, P., Braber, S., Varasteh, S., Wichers, H. J. & Folkerts, G. Hypoxia and heat stress affect epithelial integrity in a Caco-2/HT-29 co-culture. Sci. Rep. 11, 13186. https://doi.org/10.1038/s41598-021-92574-5 (2021).

    Google Scholar 

  117. Saha, N., Koner, D. & Sharma, R. Environmental hypoxia: A threat to the gonadal development and reproduction in bony fishes. Aquacul. Fisheries 7, 572–582. https://doi.org/10.1016/j.aaf.2022.02.002 (2022).

    Google Scholar 

  118. Teitsma, C. et al. Identification of potential sites of cortisol actions on the reproductive axis in rainbow trout. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 119, 243–249. https://doi.org/10.1016/s0742-8413(98)00013-9 (1998).

    Google Scholar 

  119. Svitačová, K., Slavík, O. & Horký, P. Pigmentation potentially influences fish welfare in aquaculture. Appl. Anim. Behav. Sci. 262, 105903. https://doi.org/10.1016/j.applanim.2023.105903 (2023).

    Google Scholar 

  120. Awad, S. T. et al. Gender-specific responses in gene expression of Nile tilapia (Oreochromis niloticus) to heavy metal pollution in different aquatic habitats. Sci. Rep. 14, 14671. https://doi.org/10.1038/s41598-024-64300-4 (2024).

    Google Scholar 

  121. Cano, G. et al. Automatic selection of molecular descriptors using random forest: Application to drug discovery. Expert Syst. Appl. 72, 151–159. https://doi.org/10.1016/j.eswa.2016.12.008 (2017).

    Google Scholar 

  122. Ignatz, E. H. et al. Application of genomic tools to study and potentially improve the upper thermal tolerance of farmed Atlantic salmon (Salmo salar). BMC Genomics 26, 294. https://doi.org/10.1186/s12864-025-11482-4 (2025).

    Google Scholar 

  123. Raymo, G. et al. Fecal microbiome analysis uncovers hidden stress effects of low stocking density on rainbow trout. Anim. Microbiome 6, 57. https://doi.org/10.1186/s42523-024-00344-1 (2024).

    Google Scholar 

  124. Pihlajaniemi, T., Myllyla, R. & Kivirikko, K. I. Prolyl 4-hydroxylase and its role in collagen synthesis. J. Hepatol. 13(Suppl 3), S2-7. https://doi.org/10.1016/0168-8278(91)90002-s (1991).

    Google Scholar 

  125. Mendoza-Porras, O., Rusu, A. G., Stratford, C. & Wade, N. M. Rapid detection of heat stress biomarkers in Atlantic salmon (Salmo salar) liver using targeted proteomics, Aquaculture. Fish Fisheries 4, e147. https://doi.org/10.1002/aff2.147 (2023).

    Google Scholar 

  126. Akbarzadeh, A. et al. Developing specific molecular biomarkers for thermal stress in salmonids. BMC Genomics 19, 749. https://doi.org/10.1186/s12864-018-5108-9 (2018).

    Google Scholar 

  127. Rebl, A. et al. The synergistic interaction of thermal stress coupled with overstocking strongly modulates the transcriptomic activity and immune capacity of rainbow trout (Oncorhynchus mykiss). Sci. Rep. 10, 14913. https://doi.org/10.1038/s41598-020-71852-8 (2020).

    Google Scholar 

  128. Ito, S. & Nagata, K. Biology of Hsp47 (Serpin H1), a collagen-specific molecular chaperone. Semin. Cell Dev. Biol. 62, 142–151. https://doi.org/10.1016/j.semcdb.2016.11.005 (2017).

    Google Scholar 

  129. Lin, F. et al. Effects of temperature on muscle growth and collagen deposition in zebrafish (Danio rerio). Aquacul. Rep. 22, 100952. https://doi.org/10.1016/j.aqrep.2021.100952 (2022).

    Google Scholar 

  130. Ma, F. & Luo, L. Genome-wide identification of Hsp70/110 genes in rainbow trout and their regulated expression in response to heat stress. PeerJ 8, e10022. https://doi.org/10.7717/peerj.10022 (2020).

    Google Scholar 

  131. Yin, P. et al. Environmentally driven changes in Atlantic salmon oxidative status interact with physiological performance. Aquaculture 581, 740400. https://doi.org/10.1016/j.aquaculture.2023.740400 (2024).

    Google Scholar 

  132. Waraniak, J., Batchelor, S., Wagner, T. & Keagy, J. Landscape transcriptomic analysis detects thermal stress responses and potential adaptive variation in wild brook trout (Salvelinus fontinalis) during successive heatwaves. Sci. Total Environ. 969, 178960. https://doi.org/10.1016/j.scitotenv.2025.178960 (2025).

    Google Scholar 

  133. Kampinga, H. H. et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14, 105–111. https://doi.org/10.1007/s12192-008-0068-7 (2009).

    Google Scholar 

Download references

Funding

Nothing to report.

Author information

Authors and Affiliations

Authors

Contributions

Y.A., A.A., and M.S. Conceived the study. Y.A., A.A., G.R., A.D. and M.S. analyzed the data. Y.A. Drafted the manuscript. All authors read and approved the final manuscript. Y.A. and A.A. contributed equally.

Corresponding author

Correspondence to
Mohamed Salem.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Supplementary Material 4

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Ali, A., Ali, Y., Raymo, G. et al. Molecular signatures and machine learning driven stress biomarkers for rainbow trout aquaculture and climate adaptation.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-30120-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-30120-3

Keywords

  • Environmental stressors
  • Heat stress
  • Fish welfare
  • Predictive modeling
  • Aquaculture stress breeding


Source: Ecology - nature.com

Computational analysis and modeling of climate impact on Pteridium aquilinum (L.) populations

Omics exploration of deep-sea biodiversity: data from the “Pourquoi Pas les Abysses?” and eDNAbyss projects

Back to Top