in

Unexpected microbial rhodopsin dynamics in sync with phytoplankton blooms


Abstract

The surface ocean is the largest sunlit environment on Earth where marine microalgae are known as the main drivers of global productivity. However, rhodopsin phototrophs are actually the most abundant metabolic group, suggesting a major role in the biogeochemical cycles. While previous studies have shown that rhodopsin-containing bacterioplankton thrive in the most severely nutrient-depleted environments, growing evidence suggest that this type of phototrophy may also be relevant in nutrient-rich environments. To examine its role in productive waters, we investigated the monthly rhodopsin dynamics in the upwelling system of the Southern California Bight by measuring retinal–the photoreactive chromophore essential for rhodopsin function–in seawater. Unlike oligotrophic regions, rhodopsin levels peaked during the highly productive spring phytoplankton bloom, coinciding with the highest chlorophyll concentrations. Heterotrophic bacterial abundances, particularly within the order Flavobacteriales, correlated strongly with rhodopsin concentrations, allowing us to build linear models to predict rhodopsin distributions in a productive environment. Metagenomic data further showed that Flavobacteriales also dominated the rhodopsin gene pool when the highest rhodopsin levels were recorded, underscoring their key contribution to light-driven energy capture. Overall, our findings reveal that rhodopsin phototrophy plays a substantial role in productive marine systems, broadening its recognized importance far beyond oligotrophic oceans.

Data availability

Source data are provided with this paper. 16S rDNA amplicon and shotgun sequencing data are available on Genbank (https://www.ncbi.nlm.nih.gov/genbank/) under the Bioproject PRJNA1040444. Metagenome Assembled Genomes (MAGs) are available on Figshare https://doi.org/10.6084/m9.figshare.2985686691 Source data are provided with this paper.

References

  1. Falkowski, P. G. The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynth Res. 39, 235–258 (1994).

    Google Scholar 

  2. Larkum, A., Ritchie, R. & Raven, J. J. P. Living off the sun: chlorophylls, bacteriochlorophylls and rhodopsins. Photosynthetica 56, 11–43 (2018).

    Google Scholar 

  3. Karl, D. M. Solar energy capture and transformation in the sea. Elementa 2, 000021 (2014).

    Google Scholar 

  4. Béjà, O. et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289, 1902–1906 (2000).

    Google Scholar 

  5. Martinez, A., Bradley, A. S., Waldbauer, J. R., Summons, R. E. & DeLong, E. F. Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host. Proc. Natl. Acad. Sci. USA 104, 5590–5595 (2007).

    Google Scholar 

  6. Finkel, O. M., Béjà, O. & Belkin, S. Global abundance of microbial rhodopsins. ISME J. 7, 448–451 (2013).

    Google Scholar 

  7. Kandori, H. Ion-pumping microbial rhodopsins. Front. Mol. Biosci. 2, 52 (2015).

    Google Scholar 

  8. Pinhassi, J., DeLong, E. F., Béjà, O., Gonzalez, J. M. & Pedrós-Alió, C. Marine bacterial and archaeal ion-pumping rhodopsins: genetic diversity, physiology, and ecology. Microbiol. Mol. Biol. Rev. 80, 929–954 (2016).

    Google Scholar 

  9. Gómez-Consarnau, L. et al. Microbial rhodopsins are major contributors to the solar energy captured in the sea. Sci. Adv. 5, eaaw8855 (2019).

    Google Scholar 

  10. Kirchman, D. L. & Hanson, T. E. Bioenergetics of photoheterotrophic bacteria in the oceans. Environ. Microbiol. Rep. 5, 188–199 (2013).

    Google Scholar 

  11. Morris, R. M. et al. Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and energy transduction. ISME J. 4, 673–685 (2010).

    Google Scholar 

  12. Martínez-García, S. & Pinhassi, J. Adaptations of microorganisms to low nutrient environments: managing life in the oligotrophic ocean. In Encyclopedia of Microbiology 4th edn, (ed. Schmidt, T. M.) (Academic Press, Oxford, 2019).

  13. Brindefalk, B. et al. Distribution and expression of microbial rhodopsins in the Baltic Sea and adjacent waters. Environ. Microbiol. 18, 4442–4455 (2016).

    Google Scholar 

  14. Nguyen, D. et al. Winter diversity and expression of proteorhodopsin genes in a polar ocean. ISME J. 9, 1835–1845 (2015).

    Google Scholar 

  15. Campbell, B. J., Waidner, L. A., Cottrell, M. T. & Kirchman, D. L. Abundant proteorhodopsin genes in the North Atlantic Ocean. Environ. Microbiol. 10, 99–109 (2008).

    Google Scholar 

  16. Dubinsky, V. et al. Metagenomic analysis reveals unusually high incidence of proteorhodopsin genes in the ultraoligotrophic Eastern Mediterranean Sea. Environ. Microbiol. 19, 1077–1090 (2017).

    Google Scholar 

  17. Lami, R., Cottrell, M. T., Campbell, B. J. & Kirchman, D. L. Light-dependent growth and proteorhodopsin expression by Flavobacteria and SAR11 in experiments with Delaware coastal waters. Environ. Microbiol. 11, 3201–3209 (2009).

    Google Scholar 

  18. Teeling, H. et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336, 608–611 (2012).

    Google Scholar 

  19. Steindler, L., Schwalbach, M. S., Smith, D. P., Chan, F. & Giovannoni, S. J. Energy starved Candidatus Pelagibacter ubique substitutes light-mediated ATP production for endogenous carbon respiration. PLoS ONE 6, e19725 (2011).

    Google Scholar 

  20. Sieradzki, E. T., Fuhrman, J. A., Rivero-Calle, S. & Gómez-Consarnau, L. Proteorhodopsins dominate the expression of phototrophic mechanisms in seasonal and dynamic marine picoplankton communities. PeerJ 6, e5798 (2018).

    Google Scholar 

  21. Giovannoni, S. J. SAR11 bacteria: the most abundant plankton in the oceans. Ann. Rev. Mar. Sci. 9, 231–255 (2017).

    Google Scholar 

  22. Gómez-Consarnau, L. et al. Proteorhodopsin light-enhanced growth linked to vitamin-B1 acquisition in marine Flavobacteria. ISME J. 10, 1102–1112 (2016).

    Google Scholar 

  23. Gómez-Consarnau, L. et al. Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature 445, 210–213 (2007).

    Google Scholar 

  24. Hassanzadeh, B. et al. Microbial rhodopsins are increasingly favoured over chlorophyll in high nutrient low chlorophyll waters. Environ. Microbiol. Rep. 13, 401–406 (2021).

    Google Scholar 

  25. Andrew, S. M. et al. Widespread use of proton-pumping rhodopsin in Antarctic phytoplankton. Proc. Natl. Acad. Sci. USA 120, e2307638120 (2023).

    Google Scholar 

  26. Longhurst, A., Sathyendranath, S., Platt, T. & Caverhill, C. An estimate of global primary production in the ocean from satellite radiometer data. J. Plankton Res. 17, 1245–1271 (1995).

    Google Scholar 

  27. Capone, D. G. & Hutchins, D. A. Microbial biogeochemistry of coastal upwelling regimes in a changing ocean. Nat. Geosci. 6, 711–717 (2013).

    Google Scholar 

  28. Chow, C.-E. T. et al. Temporal variability and coherence of euphotic zone bacterial communities over a decade in the Southern California Bight. ISME J. 7, 2259 (2013).

    Google Scholar 

  29. Cram, J. A. et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 9, 563 (2015).

    Google Scholar 

  30. Countway, P. D., Vigil, P. D., Schnetzer, A., Moorthi, S. D. & Caron, D. A. Seasonal analysis of protistan community structure and diversity at the USC Microbial Observatory (San Pedro Channel, North Pacific Ocean). Limnol. Oceanogr. 55, 2381–2396 (2010).

    Google Scholar 

  31. Maresca, J. A., Miller, K. J., Keffer, J. L., Sabanayagam, C. R. & Campbell, B. J. Distribution and diversity of rhodopsin-producing microbes in the Chesapeake Bay. Appl. Environ. Microbiol. 84, 00137–00118 (2018).

    Google Scholar 

  32. Gómez-Consarnau, L., Needham, D. M., Weber, P. K., Fuhrman, J. A. & Mayali, X. Influence of Light on particulate organic matter utilization by attached and free-living marine bacteria. Front. Microbiol. 10, 1204 (2019).

    Google Scholar 

  33. Strauss, J. et al. Plastid-localized xanthorhodopsin increases diatom biomass and ecosystem productivity in iron-limited surface oceans. Nat. Microbiol. 8, 2050–2066 (2023).

    Google Scholar 

  34. Bar-Shalom, R. et al. Rhodopsin-mediated nutrient uptake by cultivated photoheterotrophic Verrucomicrobiota. ISME J. 17, 1063–1074 (2023).

    Google Scholar 

  35. Bergauer, K. et al. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. Proc. Natl. Acad. Sci. USA 115, E400–E408 (2018).

    Google Scholar 

  36. Arístegui, J. et al. Variability in plankton community structure, metabolism, and vertical carbon fluxes along an upwelling filament (Cape Juby, NW Africa). Prog. Oceanogr. 62, 95–114 (2004).

    Google Scholar 

  37. Giovannoni, S. J. et al. Proteorhodopsin in the ubiquitous marine bacterium SAR11. Nature 438, 82–85 (2005).

    Google Scholar 

  38. Béjà, O., Spudich, E. N., Spudich, J. L., Leclerc, M. & DeLong, E. F. Proteorhodopsin phototrophy in the ocean. Nature 411, 786–789 (2001).

    Google Scholar 

  39. Lauro, F. M. et al. The genomic basis of trophic strategy in marine bacteria. Proc. Natl. Acad. Sci. USA 106, 15527–15533 (2009).

    Google Scholar 

  40. Olson, D. K. et al. Proteorhodopsin variability and distribution in the North Pacific Subtropical Gyre. ISME J. 12, 1047–1060 (2018).

    Google Scholar 

  41. Rozenberg, A., Inoue, K., Kandori, H. & Béjà, O. Microbial rhodopsins: the last two decades. Annu. Rev. Microbiol. 75, 427–447 (2021).

    Google Scholar 

  42. Mannen, K. et al. Multiple roles of a conserved glutamate residue for unique biophysical properties in a new group of microbial rhodopsins homologous to TAT rhodopsin. J. Mol. Biol. 436, 168331 (2024).

    Google Scholar 

  43. Kolber, Z. Energy cycle in the ocean: powering the microbial world. Oceanography 20, 79–88 (2007).

    Google Scholar 

  44. Vader, A., Laughinghouse, H. D., Griffiths, C., Jakobsen, K. S. & Gabrielsen, T. M. Proton-pumping rhodopsins are abundantly expressed by microbial eukaryotes in a high-Arctic fjord. Environ. Microbiol. 20, 890–902 (2018).

    Google Scholar 

  45. Marchetti, A. et al. Marine diatom proteorhodopsins and their potential role in coping with low iron availability. ISME J. 9, 2745–2748 (2015).

    Google Scholar 

  46. Fernández-Gomez, B. et al. Ecology of marine Bacteroidetes: a comparative genomics approach. ISME J. 7, 1026–1037 (2013).

    Google Scholar 

  47. Arandia‐Gorostidi, N. et al. Light supports cell‐integrity and growth rates of taxonomically diverse coastal photoheterotrophs. Environ. Microbiol. 22, 3823–3837 (2020).

  48. González, J. M. et al. Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp. MED152 (Flavobacteria). Proc. Natl. Acad. Sci. USA 105, 8724–8729 (2008).

    Google Scholar 

  49. Mary, I. et al. Light enhanced amino acid uptake by dominant bacterioplankton groups in surface waters of the Atlantic Ocean. FEMS Microbiol. Ecol. 63, 36–45 (2008).

    Google Scholar 

  50. Gómez-Pereira, P. R. et al. Comparable light stimulation of organic nutrient uptake by SAR11 and Prochlorococcus in the North Atlantic subtropical gyre. ISME J. 7, 603–614 (2013).

    Google Scholar 

  51. Knap, A., Michaels, A., Close, A., Ducklow, H. & Dickson, A. Protocols for the Joint Global Ocean Flux Study (JGOFS) Core Measurements. IOC Manuals and Guides No. 29, UNESCO, Paris (1994).

  52. Schlitzer, R. Ocean Data View. https://odv.awi.de (2018).

  53. Strickland, J. D. & Parsons, T. R. A Practical Handbook of Seawater Analysis. 2nd ed. Bulletin No. 167. (Ottawa: Fisheries Research Board of Canada, 1972).

  54. Cruaud, P., Rasplus, J.-Y., Rodriguez, L. J. & Cruaud, A. High-throughput sequencing of multiple amplicons for barcoding and integrative taxonomy. Sci. Rep. 7, 1–12 (2017).

    Google Scholar 

  55. Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).

    Google Scholar 

  56. Andrews, S. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).

  57. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Google Scholar 

  58. Li, D. et al. MEGAHIT v1. 0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102, 3–11 (2016).

    Google Scholar 

  59. Arkin, A. P. et al. KBase: the United States department of energy systems biology knowledgebase. Nat. Biotechnol. 36, 566–569 (2018).

    Google Scholar 

  60. West, P. T., Probst, A. J., Grigoriev, I. V., Thomas, B. C. & Banfield, J. F. Genome-reconstruction for eukaryotes from complex natural microbial communities. Genome Res. 28, 569–580 (2018).

    Google Scholar 

  61. Zhu, W., Lomsadze, A. & Borodovsky, M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 38, e132 (2010).

    Google Scholar 

  62. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 11, 1–11 (2010).

    Google Scholar 

  63. Mirdita, M., Steinegger, M., Breitwieser, F., Söding, J. & Levy Karin, E. Fast and sensitive taxonomic assignment to metagenomic contigs. Bioinformatics 37, 3029–3031 (2021).

    Google Scholar 

  64. Li, W. et al. The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res. 43, W580–W584 (2015).

    Google Scholar 

  65. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    Google Scholar 

  66. Suzek, B. E. et al. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31, 926–932 (2015).

    Google Scholar 

  67. Levy Karin, E., Mirdita, M. & Söding, J. MetaEuk—sensitive, high-throughput gene discovery, and annotation for large-scale eukaryotic metagenomics. Microbiome 8, 1–15 (2020).

    Google Scholar 

  68. Groussman, R. D., Blaskowski, S., Coesel, S. N. & Armbrust, E. V. MarFERReT, an open-source, version-controlled reference library of marine microbial eukaryote functional genes. Sci. Data 10, 926 (2023).

    Google Scholar 

  69. Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 6, 1925–1927 (2020).

    Google Scholar 

  70. Vasimuddin, M., Misra, S., Li, H. & Aluru, S. Efficient architecture-aware acceleration of BWA-MEM for multicore systems. In 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS) 314–324 (IEEE, Rio de Janeiro, Brazil, 2019). https://doi.org/10.1109/IPDPS.2019.00041.

  71. Li, H. The sequence alignment/map (SAM) format and SAMtools 1000 Genome Project data processing subgroup. Bioinformatics 25, 1 (2009).

    Google Scholar 

  72. Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Google Scholar 

  73. Ernst, O. P. et al. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev. 8, 126–163 (2014).

    Google Scholar 

  74. Nagata, T. & Inoue, K. Rhodopsins at a glance. J. Cell Sci. 134, jcs258989 (2021).

    Google Scholar 

  75. Yamauchi, Y. et al. Molecular properties of a DTD channelrhodopsin from Guillardia theta. Biophys. Physicobiol. 14, 57–66 (2017).

    Google Scholar 

  76. Bulzu, P., Kavagutti, V. S., Andrei, A. & Ghai, R. The evolutionary kaleidoscope of rhodopsins. mSystems 7, e00405–22 (2022).

    Google Scholar 

  77. Needham et al. A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc. Natl. Acad. Sci. USA 116, 20574–20583 (2019).

    Google Scholar 

  78. Man, D. et al. Diversification and spectral tuning in marine proteorhodopsins. EMBO J. 15, 725–731 (2003).

    Google Scholar 

  79. Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    Google Scholar 

  80. Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).

    Google Scholar 

  81. Johnson, L. S., Eddy, S. R. & Portugaly, E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinf. 11, 431 (2010).

    Google Scholar 

  82. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Google Scholar 

  83. Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).

    Google Scholar 

  84. Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).

    Google Scholar 

  85. Pan, S., Zhao, X.-M. & Coelho, L. P. SemiBin2: self-supervised contrastive learning leads to better MAGs via deep learning. Bioinformatics 39, i21–i29 (2023).

    Google Scholar 

  86. Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158 (2018).

    Google Scholar 

  87. Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).

    Google Scholar 

  88. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Google Scholar 

  89. Cantalapiedra, C. P., Hernandez-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Bio. Evol. 38, 5825–5829 (2021).

    Google Scholar 

  90. Aroney, S. T. N. et al. CoverM: read alignment statistics for metagenomics. Bioinformatics 41, btaf147 (2025).

    Google Scholar 

  91. Cuevas-Cruz, M. et al. Annotated metagenome-assembled genomes (MAGs) from the Southern California Bight. Data sets. Figshare https://doi.org/10.6084/m9.figshare.29856866.

Download references

Acknowledgements

We thank Yamne Ortega Saad, Hiram Zayola and Lidia Montiel for their assistance in DNA extractions, statistical and bioinformatics analyses, and the crew on board the R/V Yellowfin for sample collection. This project was partially funded by the United States National Science Foundation grant (NSF, OCE1924464 and OCE-2220546), the Ministry of Economy and Competitiveness – Spanish Agencia Estatal de Investigación PID2023-152792NB-I00 and the United States-Israel Binational Science Foundation (BSF, No. 2019612).

Author information

Authors and Affiliations

Authors

Contributions

L.G.-C., B.H., and S.A.S.-W. designed research, L.G.-C., B.H., and S.A.S.-W. collected and processed samples, L.G.-C., B.H., E.V., M.C.-C., J.A., R.L., F.L., A.L.-L., L.S. and S.A.S.-W. performed research and analyzed data; L.G.-C., B.H., and S.A.S.-W. wrote the paper with input from the other coauthors.

Corresponding author

Correspondence to
Laura Gómez-Consarnau.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Shiqiang Gao, and the other, anonymous, reviewer for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Supplementary Data 4

Supplementary Data 5

Reporting Summary

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Gómez-Consarnau, L., Hassanzadeh, B., Villarreal, E. et al. Unexpected microbial rhodopsin dynamics in sync with phytoplankton blooms.
Nat Commun (2025). https://doi.org/10.1038/s41467-025-67474-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41467-025-67474-1


Source: Ecology - nature.com

Reconstruction of 2,965 Microbial Genomes from Mangrove Sediments across Guangxi, China

Synergistic role of Trichormus variabilis and zeolites in three-layer culturing system for modulating the wastewater effluent community

Back to Top