in

A dataset on worldwide penguin diet


Abstract

Studying the diet of penguins is essential for understanding their role in marine ecosystems, evaluating their responses to environmental changes, and informing conservation strategies. This manuscript presents the ‘Penguin Diet Dataset-v2’, a comprehensive compilation of dietary data for 17 out of 19 currently recorded penguin species, obtained through a systematic review of the scientific literature. Spanning the 1980–2019 period and covering 149 global locations, the dataset includes 2.749 dietary entries with both qualitative and quantitative information on prey types. The dataset is enriched with metadata such as geographic locations, time periods, seasons, and life stages, providing insights into species-specific dietary patterns and ecological trends. Key prey groups include fish from the class Teleostei, crustaceans from the class Malacostraca, and mollusks from the class Cephalopoda. The Adélie Penguin and the Magellanic Penguin are the most extensively studied species. This dataset serves as a valuable resource for advancing research on penguin feeding ecology and addressing gaps in knowledge on understudied species, regions, and time periods.

Data availability

The Penguin Diet Dataset-v2, now publicly available on Digital.CSIC (https://doi.org/10.20350/digitalCSIC/17565, URL: http://hdl.handle.net/10261/399953), brings together dietary data for 17 of the 19 known penguin species. Compiled in an accessible.xlsx format, the dataset includes detailed predator–prey interactions, along with essential metadata to support interpretation and reuse. Users will find clearly organized sheets for diet entries, variable definitions, species and prey codes, and geographic coordinates.

Code availability

No computational code is associated with this dataset, as all information has been exclusively sourced from available literature.

References

  1. Frugone, M. J. et al. Taxonomy based on limited genomic markers may underestimate species diversity of rockhopper penguins and threaten their conservation. Diversity and Distributions 27, 2277–2296 (2021).

    Google Scholar 

  2. Gimeno, M. et al. Climate and human stressors on global penguin hotspots: Current assessments for future conservation. Global Change Biology 30, e17143 (2024).

    Google Scholar 

  3. Cimino, M. A., Lynch, H. J., Saba, V. S. & Oliver, M. J. Projected asymmetric response of Adélie penguins to Antarctic climate change. Sci Rep 6, 28785 (2016).

    Google Scholar 

  4. Sánchez, S. et al. Within-colony spatial segregation leads to foraging behaviour variation in a seabird. Mar. Ecol. Prog. Ser. 606, 215–230 (2018).

    Google Scholar 

  5. Ramírez, F. et al. Natural and anthropogenic factors affecting the feeding ecology of a top marine predator, the Magellanic penguin. Ecosphere 5, art38 (2014).

    Google Scholar 

  6. Handley, J. et al. Marine important bird and biodiversity areas for penguins in Antarctica, targets for conservation action. Frontiers in Marine Science 7, (2021).

  7. Hindell, M. A. et al. Tracking of marine predators to protect Southern Ocean ecosystems. Nature 580, 87–92 (2020).

    Google Scholar 

  8. Trathan, P. N. et al. Pollution, habitat loss, fishing, and climate change as critical threats to penguins. Conservation Biology 29, 31–41 (2015).

    Google Scholar 

  9. Ropert-Coudert, Y. et al. Happy Feet in a Hostile World? The Future of Penguins Depends on Proactive Management of Current and Expected Threats. Front. Mar. Sci. 6, 248 (2019).

    Google Scholar 

  10. Chiaradia, A., Forero, M. G., Hobson, K. A. & Cullen, J. M. Changes in diet and trophic position of a top predator 10 years after a mass mortality of a key prey. ICES Journal of Marine Science 67, 1720 (2010).

    Google Scholar 

  11. Cherel, Y., Hobson, K. A., Guinet, C. & Vanpe, C. Stable isotopes document seasonal changes in trophic niches and winter foraging individual specialization in diving predators from the Southern Ocean. Journal of Animal Ecology 76, 826–836 (2007).

    Google Scholar 

  12. Campbell, K. J. et al. Local forage fish abundance influences foraging effort and offspring condition in an endangered marine predator. Journal of Applied Ecology 56, 1751–1760 (2019).

    Google Scholar 

  13. Carpenter-Kling, T. et al. Gentoo penguins as sentinels of climate change at the sub-Antarctic Prince Edward Archipelago, Southern Ocean. Ecological Indicators 101, 163–172 (2019).

    Google Scholar 

  14. Ciancio, J. E., Yorio, P., Buratti, C., Colombo, G. Á. & Frere, E. Isotopic niche plasticity in a marine top predator as indicator of a large marine ecosystem food web status. Ecological Indicators 126, 107687 (2021).

    Google Scholar 

  15. Kowalczyk, N. D., Chiaradia, A., Preston, T. J. & Reina, R. D. Linking dietary shifts and reproductive failure in seabirds: a stable isotope approach. Funct Ecol 28, 755–765 (2014).

    Google Scholar 

  16. Waluda, C. M., Hill, S. L., Peat, H. J. & Trathan, P. N. Long-term variability in the diet and reproductive performance of penguins at Bird Island, South Georgia. Mar Biol 164, 39 (2017).

    Google Scholar 

  17. Aparicio-Estalella, C., Buil, H., Gimeno, M., Coll, M. & Ramírez, F. A comprehensive dataset on worldwide penguin diet: Penguin Diet Dataset-v2. http://hdl.handle.net/10261/399953 (2025).

  18. Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ n71, https://doi.org/10.1136/bmj.n71 (2021).

  19. Tierney, M., Emmerson, L. & Hindell, M. Temporal variation in Adélie penguin diet at Béchervaise Island, east Antarctica and its relationship to reproductive performance. Mar Biol 156, 1633–1645 (2009).

    Google Scholar 

  20. Bingham, M. The decline of Falkland Islands penguins in the presence of a commercial fishing industry. Rev. chil. hist. nat. 75, (2002).

  21. Booth, J. & McQuaid, C. Northern rockhopper penguins prioritise future reproduction over chick provisioning. Mar. Ecol. Prog. Ser. 486, 289–304 (2013).

    Google Scholar 

  22. Browne, T., Lalas, C., Mattern, T. & Van Heezik, Y. Chick starvation in yellow‐eyed penguins: Evidence for poor diet quality and selective provisioning of chicks from conventional diet analysis and stable isotopes. Austral Ecology 36, 99–108 (2011).

    Google Scholar 

  23. Castillo, J., Yorio, P. & Gatto, A. Shared dietary niche between sexes in Magellanic Penguins. Austral Ecology 44, 635–647 (2019).

    Google Scholar 

  24. Cavallo, C. et al. Quantifying prey availability using the foraging plasticity of a marine predator, the little penguin. Functional Ecology 34, 1626–1639 (2020).

    Google Scholar 

  25. Cavallo, C. et al. Molecular analysis of predator scats reveals role of salps in temperate inshore food webs. Front. Mar. Sci. 5, 381 (2018).

    Google Scholar 

  26. Cherel, Y. & Kooyman, G. L. Food of emperor penguins (Aptenodytes forsteri) in the western Ross Sea, Antarctica. Marine Biology 130, 335–344 (1998).

    Google Scholar 

  27. Cherel, Y., Pütz, K. & Hobson, K. A. Summer diet of king penguins (Aptenodytes patagonicus) at the Falkland Islands, southern Atlantic Ocean. Polar Biol 25, 898–906 (2002).

    Google Scholar 

  28. Cherel, Y., Ridoux, V. & Rodhouse, P. G. Fish and squid in the diet of king penguin chicks, Aptenodytes patagonicus, during winter at sub-antarctic Crozet Islands. Marine Biology 126, 559–570 (1996).

    Google Scholar 

  29. Chiaradia, A., Costalunga, A. & Kerry, K. The diet of Little Penguins (Eudyptula minor) at Phillip Island, Victoria, in the absence of a major prey—Pilchard (Sardinops sagax). Emu – Austral Ornithology 103, 43–48 (2003).

    Google Scholar 

  30. Chiaradia, A. et al. Diet segregation between two colonies of little penguins Eudyptula minor in southeast Australia. Austral Ecology 37, 610–619 (2012).

    Google Scholar 

  31. Corsolini, S., Ademollo, N., Romeo, T., Olmastroni, S. & Focardi, S. Persistent organic pollutants in some species of a Ross Sea pelagic trophic web. Antartic science 15, 95–104 (2003).

    Google Scholar 

  32. Crawford, R. J. M. et al. Decrease in Numbers of the Eastern Rockhopper Penguin Eudyptes Chrysocome Filholi at Marion Island, 1994/95–2002/03. African Journal of Marine Science 25, 487–498 (2003).

    Google Scholar 

  33. Crawford, R. J. M. & Dyer, B. M. Responses by four seabird species to a fluctuating availability of Cape Anchovy Engraulis capensis off South Africa. Ibis 137, 329–339 (1995).

    Google Scholar 

  34. Croxall, J. P., Prince, P. A., Baird, A. & Ward, P. The diet of the Southern rockhopper penguin Eudyptes chrysocome chrysocome at Beauchene Island, Falkland Islands. Journal of Zoology 206, 485–496 (1985).

    Google Scholar 

  35. Cullen, J. M., Montague, T. L. & Hull, C. Food of Little Penguins Eudyptula minor in Victoria: Comparison of Three Localities between 1985 and 1988. Emu – Austral Ornithology 91, 318–341 (1991).

    Google Scholar 

  36. Dakwa, F. et al. Long-term variation in the breeding diets of macaroni and eastern rockhopper penguins at Marion Island (1994–2018). African Journal of Marine Science 43, 187–199 (2021).

    Google Scholar 

  37. De Paula, A. A., Ott, P. H., Tavares, M., Santos, R. A. & Silva-Souza, Â. T. Host–parasite relationship in Magellanic Penguins (Spheniscus magellanicus) during their long northward journey to the Brazilian coast. Polar Biol 43, 1261–1272 (2020).

    Google Scholar 

  38. Deagle, B. E., Chiaradia, A., McInnes, J. & Jarman, S. N. Pyrosequencing faecal DNA to determine diet of little penguins: is what goes in what comes out? Conserv Genet 11, 2039–2048 (2010).

    Google Scholar 

  39. Dehnhard, N. et al. Plasticity in foraging behaviour and diet buffers effects of inter-annual environmental differences on chick growth and survival in southern rockhopper penguins Eudyptes chrysocome chrysocome. Polar Biol 39, 1627–1641 (2016).

    Google Scholar 

  40. Emslie, S. D., Polito, M. J. & Patterson, W. P. Stable isotope analysis of ancient and modern gentoo penguin egg membrane and the krill surplus hypothesis in Antarctica. Antarctic Science 25, 213–218 (2013).

    Google Scholar 

  41. Fernandez, S. J., Yorio, P. & Ciancio, J. E. Diet composition of expanding breeding populations of the Magellanic Penguin. Marine Biology Research 15, 84–96 (2019).

    Google Scholar 

  42. Flemming, S. A. & Van Heezik, Y. Stable isotope analysis as a tool to monitor dietary trends in little penguins Eudyptula minor: Little penguin isotopic mixing models. Austral Ecology 39, 656–667 (2014).

    Google Scholar 

  43. Da, S., Fonseca, V. S., Petry, M. V. & Jost, A. H. Diet of the Magellanic Penguin on the Coast of Rio Grande do Sul, Brazil. Waterbirds: The International Journal of Waterbird Biology 24, 290 (2001).

    Google Scholar 

  44. Forero, M. et al. Food resource utilisation by the Magellanic penguin evaluated through stable-isotope analysis: segregation by sex and age and influence on offspring quality. Mar. Ecol. Prog. Ser. 234, 289–299 (2002).

    Google Scholar 

  45. Fragão, J. et al. Microplastics and other anthropogenic particles in Antarctica: Using penguins as biological samplers. Science of The Total Environment 788, 147698 (2021).

    Google Scholar 

  46. Fraser, M. M. & Lalas, C. Seasonal variation in the diet of blue penguins (Eudyptula minor) at Oamaru, New Zealand. Notornis 51, 7 (2004).

    Google Scholar 

  47. Fromant, A., Schumann, N., Dann, P., Cherel, Y. & Arnould, J. P. Y. Trophic niches of a seabird assemblage in Bass Strait, south-eastern Australia. PeerJ 8, e8700 (2020).

    Google Scholar 

  48. Gales, N. J., Klages, N. T. W., Williams, R. & Woehler, E. J. The diet of the emperor penguin, Aptenodytes forsteri, in Amanda Bay, Princess Elizabeth Land, Antarctica. Antartic science 2, 23–28 (1990).

    Google Scholar 

  49. Gandini, P. A., Frere, E., Pettovello, A. D. & Cedrola, P. V. Interaction between Magellanic Penguins and Shrimp Fisheries in Patagonia, Argentina. The Condor 101, 783–789 (1999).

    Google Scholar 

  50. Gauthier-Clerc, M., Le Maho, Y., Clerquin, Y., Bost, C. & Handrich, Y. Seabird reproduction in an unpredictable environment: how King penguins provide their young chicks with food. Mar. Ecol. Prog. Ser. 237, 291–300 (2002).

    Google Scholar 

  51. Guímaro, H. R. et al. Cephalopods habitat and trophic ecology: historical data using snares penguin as biological sampler. Polar Biol 44, 73–84 (2021).

    Google Scholar 

  52. Herling, C., Culik, B. M. & Hennicke, J. C. Diet of the Humboldt penguin (Spheniscus humboldti) in northern and southern Chile. Marine Biology 147, 13–25 (2005).

    Google Scholar 

  53. Hindell, M. A. The diet of the King Penguin Aptenodytes patagonicus at Macquarie Island. Ibis 130, 193–203 (1988).

    Google Scholar 

  54. Hong, S.-Y. et al. Regional differences in the diets of Adélie and Emperor penguins in the Ross Sea, Antarctica. Animals 11, 2681 (2021).

    Google Scholar 

  55. Hull, C. L. Comparison of the diets of breeding royal (Eudyptes schlegeli) and rockhopper (Eudyptes chrysocome) penguins on Macquarie Island over three years. Journal of Zoology 247, 507–529 (1999).

    Google Scholar 

  56. Jafari, V. et al. Spatial and temporal diet variability of Adélie (Pygoscelis adeliae) and Emperor (Aptenodytes forsteri) Penguin: a multi tissue stable isotope analysis. Polar Biol 44, 1869–1881 (2021).

    Google Scholar 

  57. Jarman, S. N., Gales, N. J., Tierney, M., Gill, P. C. & Elliott, N. G. A DNA‐based method for identification of krill species and its application to analysing the diet of marine vertebrate predators. Molecular Ecology 11, 2679–2690 (2002).

    Google Scholar 

  58. Jarman, S. N. et al. Adélie penguin population diet monitoring by analysis of food DNA in scats. PLoS ONE 8, e82227 (2013).

    Google Scholar 

  59. Juáres, M. A. et al. Diet of Adélie penguins (Pygoscelis adeliae) at Stranger Point (25 de Mayo/King George Island, Antarctica) over a 13-year period (2003–2015). Polar Biol 41, 303–311 (2018).

    Google Scholar 

  60. Juáres, M. A., Santos, M., Mennucci, J. A., Coria, N. R. & Mariano-Jelicich, R. Diet composition and foraging habitats of Adélie and gentoo penguins in three different stages of their annual cycle. Mar Biol 163, 105 (2016).

    Google Scholar 

  61. Kent, S., Seddon, J., Robertson, G. & Wienecke, B. Diet of Adelie Penguins Pygoscelis Adeliae at Shirley Island, East Antarctica, January 1992. MO 26, (1998).

  62. Kirkwood, R. & Robertson, G. Seasonal change in the foraging ecology of emperor penguins on the Mawson Coast, Antarctica. Mar. Ecol. Prog. Ser. 156, 205–223 (1997).

    Google Scholar 

  63. Kirkwood, R. & Robertson, G. The foraging ecology of female emperor penguins in winter. Ecological Monographs 67, 155–176 (1997).

    Google Scholar 

  64. Klages, N. Food and feeding ecology of emperor penguins in the eastern Weddell Sea. Polar Biol 9, 385–390 (1989).

    Google Scholar 

  65. Klages, N. T., Brooke, M. D. L. & Watkins, B. P. Prey of Northern Rockhopper penguins at Gough Island, South Atlantic Ocean. Ostrich 59, 162–165 (1988).

    Google Scholar 

  66. Klomp, N. & Wooller, R. Diet of little penguins, Eudyptula minor, from Penguin Island, Western Australia. Mar. Freshwater Res. 39, 633 (1988).

    Google Scholar 

  67. Kowalczyk, N. D., Chiaradia, A., Preston, T. J. & Reina, R. D. Fine-scale dietary changes between the breeding and non-breeding diet of a resident seabird. R. Soc. open sci. 2, 140291 (2015).

    Google Scholar 

  68. Laugksch, R. C. & Adams, N. J. Trends in pelagic fish populations of the Saldanha Bay region, southern Benguela upwelling system, 1980–1990: a predator’s perspective. South African Journal of Marine Science 13, 295–307 (1993).

    Google Scholar 

  69. Ludynia, K., Roux, J.-P., Jones, R., Kemper, J. & Underhill, L. G. Surviving off junk: low-energy prey dominates the diet of African penguins Spheniscus demersus at Mercury Island, Namibia, between 1996 and 2009. African Journal of Marine Science 32, 563–572 (2010).

    Google Scholar 

  70. Lynnes, A. S., Reid, K. & Croxall, J. P. Diet and reproductive success of Adélie and chinstrap penguins: linking response of predators to prey population dynamics. Polar Biol 27, (2004).

  71. Maccapan, D. et al. Effects of sea-ice persistence on the diet of Adélie penguin (Pygoscelis adeliae) chicks and the trophic differences between chicks and adults in the Ross Sea, Antarctica. Biology 12, 708 (2023).

    Google Scholar 

  72. Marques, F. P., Cardoso, L. G., Haimovici, M. & Bugoni, L. Trophic ecology of Magellanic penguins (Spheniscus magellanicus) during the non-breeding period. Estuarine, Coastal and Shelf Science 210, 109–122 (2018).

    Google Scholar 

  73. Masello, J. F. et al. How animals distribute themselves in space: energy landscapes of Antarctic avian predators. Mov Ecol 9, 24 (2021).

    Google Scholar 

  74. Miller, A. K. & Trivelpiece, W. Z. Cycles of Euphausia superba recruitment evident in the diet of Pygoscelid penguins and net trawls in the South Shetland Islands, Antarctica. Polar Biol 30, 1615–1623 (2007).

    Google Scholar 

  75. Moore, P. J. & Wakelin, M. Diet of the Yellow-eyed Penguin Megadyptes antipodes, South Island, New Zealand, 1991_1993. MO 25, (1997).

  76. Murray, D. C. et al. DNA-based faecal dietary analysis: A comparison of qPCR and High Throughput sequencing approaches. PLoS ONE 6, e25776 (2011).

    Google Scholar 

  77. Negrete, P. et al. Temporal variation in isotopic composition of Pygoscelis penguins at Ardley Island, Antarctic: Are foraging habits impacted by environmental change? Polar Biol 40, 903–916 (2017).

    Google Scholar 

  78. Panasiuk, A., Wawrzynek-Borejko, J., Musiał, A. & Korczak-Abshire, M. Pygoscelis penguin diets on King George Island, South Shetland Islands, with a special focus on the krill Euphausia superba. Antarctic Science 32, 21–28 (2020).

    Google Scholar 

  79. Petrovski, N., Sutton, G. J. & Arnould, J. P. Y. Energetic consequences of prey type in little penguins (Eudyptula minor). R. Soc. open sci. 10, 221595 (2023).

    Google Scholar 

  80. Pickett, E. P. et al. Spatial niche partitioning may promote coexistence of Pygoscelis penguins as climate‐induced sympatry occurs. Ecology and Evolution 8, 9764–9778 (2018).

    Google Scholar 

  81. Puddicombe, R. A. & Johnstone, G. W. The breeding season diet of Adélie penguins at the Vestfold Hills, East Antarctica. Hydrobiologia 165, 239–253 (1988).

    Google Scholar 

  82. Pütz, K., Ingham, R., Smith, J. & Croxall, J. Population trends, breeding success and diet composition of gentoo Pygoscelis papua, magellanic Spheniscus magellanicus and rockhopper Eudyptes chrysocome penguins in the Falkland Islands. A review. Polar Biology 24, 793–807 (2001).

    Google Scholar 

  83. Pütz, K. The post-moult diet of Emperor Penguins (Aptenodytes forsteri) in the eastern Weddell Sea, Antarctica. Polar Biol 15, (1995).

  84. Raclot, T., Groscolas, R. & Cherel, Y. Fatty acid evidence for the importance of myctophid fishes in the diet of king penguins, Aptenodytes patagonicus. Marine Biology 132, 523–533 (1998).

    Google Scholar 

  85. Ramírez, F. et al. Natural and anthropogenic factors affecting the feeding ecology of a top marine predator, the Magellanic penguin. Ecosphere 5, 1–21 (2014).

    Google Scholar 

  86. Raya Rey, A. & Schiavini, A. Inter-annual variation in the diet of female southern rockhopper penguin (Eudyptes chrysocome chrysocome) at Tierra del Fuego. Polar Biol 28, 132–141 (2005).

    Google Scholar 

  87. Raya Rey, A., Trathan, P. & Schiavini, A. Inter‐annual variation in provisioning behaviour of Southern Rockhopper Penguins Eudyptes chrysocome chrysocome at Staten Island, Argentina. Ibis 149, 826–835 (2007).

    Google Scholar 

  88. Ridoux, V. The diets and dietary segregation of seabirds at the subantarctic Crozet Islands (part 2). MO 22, (1994).

  89. Robinson, S. A. & Hindell, M. A. Foraging ecology of Gentoo Penguins Pygoscelis papua at Macquarie Island during the period of chick care. Ibis 138, 722–731 (1996).

    Google Scholar 

  90. Rombolá, E. F., Marschoff, E. & Coria, N. Inter-annual variability in Chinstrap penguin diet at South Shetland and South Orkneys Islands. Polar Biol 33, 799–806 (2010).

    Google Scholar 

  91. Santos, R. A. & Haimovici, M. Trophic relationships of the long-finned squid Loligo sanpaulensis on the southern Brazilian shelf. South African Journal of Marine Science 20, 81–91 (1998).

    Google Scholar 

  92. Scioscia, G., Raya Rey, A., Saenz Samaniego, R. A., Florentín, O. & Schiavini, A. Intra- and interannual variation in the diet of the Magellanic penguin (Spheniscus magellanicus) at Martillo Island, Beagle Channel. Polar Biol 37, 1421–1433 (2014).

    Google Scholar 

  93. Scolaro, J. A. et al. Feeding preferences of the Magellanic penguin over its breeding range in Argentina. Waterbirds: The International Journal of Waterbird Biology 22, 104 (1999).

    Google Scholar 

  94. Sherley, R. et al. Influence of local and regional prey availability on breeding performance of African penguins Spheniscus demersus. Mar. Ecol. Prog. Ser. 473, 291–301 (2013).

    Google Scholar 

  95. Silva, L. A. et al. Diferencias estacionales en la dieta de individuos juveniles del Pingüino Patagónico (Spheniscus magellanicus) reveladas en base al análisis de isótopos estables en uñas. El Hornero 30, 45–54 (2015).

    Google Scholar 

  96. Silvestro, A. M. & Casaux, R. Diet composition of Adelie penguins Pygoscelis adeliae at Hope/Esperanza Bay during 2014–2019. MO 51, (2023).

  97. Sutton, G. J. et al. Fine-scale foraging effort and efficiency of Macaroni penguins is influenced by prey type, patch density and temporal dynamics. Mar Biol 168, 3 (2021).

    Google Scholar 

  98. Tierney, M., Nichols, P. D., Wheatley, K. E. & Hindell, M. A. Blood fatty acids indicate inter- and intra-annual variation in the diet of Adélie penguins: Comparison with stomach content and stable isotope analysis. Journal of Experimental Marine Biology and Ecology 367, 65–74 (2008).

    Google Scholar 

  99. Tremblay, Y., Guinard, E. & Cherel, Y. Maximum diving depths of northern rockhopper penguins (Eudyptes chrysocome moseleyi) at Amsterdam Island. Polar Biology 17, 119–122 (1997).

    Google Scholar 

  100. Van Heezik, Y. Diets of yellow-eyed, Fiordland crested, and little blue penguins breeding sympatrically on Codfish Island, New Zealand. New Zealand Journal of Zoology 17, 543–548 (1990).

    Google Scholar 

  101. Van Heezik, Y. Seasonal, geographical, and age-related variations in the diet of the yellow-eyed penguin (Megadyptes antipodes). New Zealand Journal of Zoology 17, 201–212 (1990).

    Google Scholar 

  102. Vanstreels, R. E. T. et al. Seashell and debris ingestion by African penguins. Emu – Austral Ornithology 120, 90–96 (2020).

    Google Scholar 

  103. Waluda, C., Hill, S., Peat, H. & Trathan, P. Diet variability and reproductive performance of macaroni penguins Eudyptes chrysolophus at Bird Island, South Georgia. Mar. Ecol. Prog. Ser. 466, 261–274 (2012).

    Google Scholar 

  104. Wienecke, B. & Robertson, G. Foraging space of emperor penguins Aptenodytes forsteri in Antarctic shelf waters in winter. Mar. Ecol. Prog. Ser. 159, 249–263 (1997).

    Google Scholar 

  105. Wienecke, B. & Robertson, G. Comparison of foraging strategies of incubating king penguins Aptenodytes patagonicus from Macquarie and Heard islands. Polar Biol 29, 424–438 (2006).

    Google Scholar 

  106. Yorio, P., González-Zevallos, D., Gatto, A., Biagioni, O. & Castillo, J. Relevance of forage fish in the diet of Magellanic penguins breeding in northern Patagonia, Argentina. Marine Biology Research 13, 603–617 (2017).

    Google Scholar 

  107. Rioseco, E. A. Dieta del pingüino de Magallanes durante la temporada reproductiva 1992–93 en el Seno Otway, sur de Chile. Revista chilena de Ornitología 24, 15–19 (2018).

    Google Scholar 

  108. Chamberlain, S., Szoecs, E., Foster, Z. & Arendsee, Z. taxize: Taxonomic Information from Around the Web. 0.10.0 https://doi.org/10.32614/CRAN.package.taxize (2012).

    Google Scholar 

Download references

Acknowledgements

We would like to thank Helena Buil for her invaluable assistance with literature screening and data extraction. We also sincerely thank the Handling Editor and the two anonymous reviewers for their insightful and constructive feedback on the manuscript and accompanying dataset. This work is supported by the Spanish government through the following projects: SOSPEN (Spanish National Plan for Scientific and Technical Research and Innovation, 2021, PID2021-124831OA-I00), SEASentinels (Spanish National Plan for Scientific and Technical Research and Innovation, 2023, CNS2022-135631), and ProOceans (Spanish National Plan for Scientific and Technical Research and Innovation, 2020, PID2020-118097RB-I00). Additionally, this research is part of the Integrated Marine Ecosystem Assessments (iMARES) research group, funded by the Agència de Gestió d’Ajuts Universitaris i de Recerca (Generalitat de Catalunya), Grant No. 2021 SGR 00435. MG was supported by the FPI-SO fellowship (PRE2022-101875). This study is a contribution to the ICM-TEC (Trophic Ecology and Connectivity Scientific-Technical service of the Institut de Ciències del Mar CSIC; https://www.icm.csic.es/en/service/trophic-ecology-and-connectivity).

Author information

Authors and Affiliations

Authors

Contributions

F.R.: conceptualization, methodology, investigation, writing – original draft, supervision, project administration, funding acquisition; C.A.: methodology, investigation, data curation, writing – review & editing; M.G.: visualization, writing review & editing; M.C.: conceptualization, methodology, supervision, writing – review & editing, funding acquisition.

Corresponding author

Correspondence to
Francisco Ramírez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Ramírez, F., Aparicio-Estalella, C., Gimeno, M. et al. A dataset on worldwide penguin diet.
Sci Data (2025). https://doi.org/10.1038/s41597-025-06458-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41597-025-06458-8


Source: Ecology - nature.com

A taxonomically harmonized global dataset of wild bird hosts for avian influenza virus surveillance

Physicochemical and typological insights into Aedes albopictus and Aedes aegypti larval habitats in a sub-Saharan African urban gradient setting

Back to Top